Автор: Пользователь скрыл имя, 23 Февраля 2013 в 18:11, доклад
Ясное понимание самостоятельного положения Математика как особой науки, имеющей собственный предмет и метод, стало возможным только после накопления достаточно большого фактического материала и возникло впервые в Древней Греции в 6—5 веках до н. э. Развитие Математика до этого времени естественно отнести к периоду зарождения математики, а к 6—5 веку до н. э. приурочить начало периода элементарной математики. В течение этих двух первых периодов математические исследования имеют дело почти исключительно с весьма ограниченным запасом основных понятий, возникших ещё на очень ранних ступенях исторического развития в связи с самыми простыми запросами хозяйственной жизни, сводившимися к счёту предметов, измерению количества продуктов, площадей земельных участков, определению размеров отдельных частей архитектурных сооружений, измерению времени, коммерческим расчётам, навигации и т. п. Первые задачи механики и физики [за исключением отдельных исследований греческого учёного Архимеда (3 век до н. э.), требовавших уже начатков исчисления бесконечно малых] могли ещё удовлетворяться этим же запасом основных математических понятий. Единственной наукой, которая задолго до широкого развития математического изучения явлений природы в 17—18 веках систематически предъявляла Математика свои особые и очень большие требования, была астрономия, целиком обусловившая, например, раннее развитие тригонометрии.
Необходимо отметить деятельность Паппа Александрийского (III век). Только благодаря ему до нас дошли сведения об античных учёных и их трудах.
На фоне общего застоя и упадка резко выделяется гигантская фигура Диофанта — последнего из великих античных математиков, «отца алгебры».
После III века н. э. александрийская школа просуществовала около 100 лет — приход христианства и частые смуты в империи резко снизили интерес к науке. Отдельные учёные труды ещё появляются в Афинах, но в 529 году Юстиниан закрыл Афинскую академию как рассадник язычества.
Часть учёных переехала в Персию или Сирию и продолжала труды там. От них уцелевшие сокровища античного знания получили учёные стран ислама (см. Математика исламского средневековья).
Греческая математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония и т. д. Но главное даже не в этом. Два достижения греческой математики далеко пережили своих творцов.
Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики.
Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию.
В этих двух отношениях античная математика вполне современна.
Первая научная революция, возможно, связана с именем древнегреческого мудреца Фалеса (около 625—547 гг. до н. э.), которому приписывали доказательство геометрической теоремы о равнобедренных треугольниках.
Математики древней Индии, Китая и особенно Египта и Вавилона располагали довольно обширными математическими познаниями. Они умели вычислять площади земельных участков, производить измерение высот различных, иногда очень больших предметов, располагали довольно сложными формулами, позволявшими им вычислять объем сельскохозяйственной продукции, размеры налогов, производить различные финансовые, военные и инженерные расчеты. При всем этом доказательство как особый математический или, лучше сказать, логический прием было им почти 1 совершенно чуждо. Ученики воспринимали от своих учителей, чаще всего жрецов или писцов при правительственных учреждениях, готовые формулы без всякого доказательства и применяли их из столетия в столетие для решения сходных задач. Этим во многом объясняется медлительность в развитии восточной математики.
Древние греки были первым народом, который открыл важность логического доказательства для развития научной и прежде всего математической мысли. Энгельс настойчиво подчеркивал, что удивительная одаренность этого маленького народа обеспечила ему ту роль в истории, на которую не мог претендовать ни один народ. Этим он хотел, по-видимому, сказать, что основы современного мышления были заложены в древнегреческой науке и философии. Но почему именно древние греки открыли и изобрели доказательство? В чем сила этого приема мышления, почему именно эта сторона дела рассматривается Кантом и другими исследователями истории науки как поворотный пункт в ее развитии? Я попытаюсь хотя бы вкратце ответить на эти вопросы, хотя до окончательного их решения еще далеко.
В VII—VI вв. до н. э. в развитии древнегреческого общества наступил переломный момент. На побережье Малой Азии и Пелопоннесского полуострова вместо старых, тиранических государств начали возникать так называемые демократические города-государства — греческие полисы. Как вы знаете по школьным учебникам истории, это была демократия для рабовладельцев, но не для рабов. Однако внутри сообщества свободных граждан все решения должны были приниматься на основе голосования горожан, собиравшихся для обсуждения важных проблем на общие собрания. Чтобы склонить своих сограждан в ту или иную сторону, политические руководители, вожди различных группировок должны были убедить их в своей правоте, доказать правильность своей позиции. Очень скоро практика убеждения и доказательства была перенесена греческими мудрецами в другие области общественной жизни, прежде всего в сферу обучения и познания мира. Первоначальный смысл доказательства заключался в том, чтобы, пользуясь общими для всех правилами рассуждения, прийти к согласованному мнению или к истине. В дальнейшем под доказательством стали понимать последовательное выведение из некоторых принятых утверждений, называвшихся посылками или предпосылками, определенных следствий. Если посылки считались истинными и доказательство проводилось без нарушения принятых правил, то полученные из них заключения или следствия также рассматривались как истинные. Вскоре выяснилось, что из относительно небольшого числа бесспорных, очевидных или общепринятых посылок, не вызывавших ни у кого сомнения, на основе доказательства или процедуры логического выведения можно получить практически бесконечное число различных следствий. В обычной жизни мы переходим от одного утверждения к другому, опираясь главным образом на их содержание.
Создание математических и логических
доказательств позволило в
Отныне ученик получает от своего учителя не готовый рецепт, который остается только зазубрить, но прежде всего метод математического рассуждения, доказательства, а вместе с тем и способ открытия новых теорем. Учитель сообщает ранее полученные теоремы или аксиомы, то есть утверждения, принимаемые без доказательства, а также основные логические правила — рассуждения и формулы, позволяющие преобразовывать уже известные теоремы в другие. Мало того, что каждое доказанное предложение приобретает достоинство объективной истины, процедура доказательства снимает всякие сомнения в этом, но, что гораздо важнее, математические предложения становятся понятными. Каждый, кто обладает способностями и
Пифагор, прежде чем доказать
свою знаменитую теорему, по-
Между зарождением египетской, а затем вавилонской математики и Фалесом лежит почти тысячелетний период. За это время сделано немало: открыты важные арифметические правила, осуществлены некоторые геометрические построения.
И все же это несоизмеримо мало по сравнению с тем, что сделано за три столетия, отделяющие Фалеса от знаменитого александрийского математика III века до н. э. Евклида. Он, как известно, впервые в истории науки изложил стройную систему геометрического знания. В его «Началах» систематизированы почти все известные к тому времени основные теоремы геометрии и арифметики. Что, однако, особенно важно, эти знания не просто агрегат, не просто механическое соединение, не просто сумма различных, не связанных частей, так сказать, порций математической информации, а последовательное, логически обоснованное построение.
Вначале излагаются аксиомы,а затем из них по правилам доказательства выводятся все полученные к этому времени теоремы геометрии. Такое построение математики, получившее с тех пор название аксиома-170 тического метода, стало образцом для развития европейской математики на протяжении двух последующих тысячелетий. Возникнув из практических потребностей пересчета домашнего скота, денег, товаров, из необходимости проектировать крупные постройки, вроде пирамид и осушительных каналов, рассчитывать земельные участки и т. д., геометрия и арифметика, благодаря открытию логических доказательств и формальных преобразований, получили мощный толчок и стали развиваться в силу, как теперь говорят, внутренней логики. Накопление точных, общезначимых, доказательных математических знаний, позволявших производить точные расчеты и вычисления, с успехом заменявшие трудноосуществимые эмпирические измерения, побудило греческих мыслителей применить математику к наблюдаемым явлениям. Уже Фалес, как гласит легенда, пытался воспользоваться теоремами о подобии треугольников для измерения расстояния от берега до корабля.
Мысль о том, что применение математики может не только облегчить практически вычисления и расчеты, но и позволяет познать явления, которые иным способом вообще не могут быть познаны или могут быть познаны с трудом и менее точно, очень быстро овладело умами мыслителей. Архимед (287 — 212 гг. до н. э.) был одним из самых великих греческих механиков, широко применявших математику для решения механических и физических задач. Сочетая вычисления с наблюдениями, он, в частности, открыл знаменитый закон об уменьшении веса тел, погруженных в жидкость. Другое интересное применение, и, быть может, самое перспективное, в античную эпоху математика нашла в астрономии. В частности, александриец Эратосфен воспользовался геометрическими построениями, чтобы вычислить длину земного меридиана, поскольку он считал Землю шарообразной. Аристарх Самосский, живший в III веке до н. э., воспользовался геометрической моделью пространства для измерения диаметра Луны и расстояния до Солнца. Считая, что Земля вращается вокруг Солнца, а Луна вокруг Земли, он правильно представил себе пространственно-геометрическую модель расположения этих трех тел, при котором ровно половина лунного диска является освещенной. Аристарх правильно решил, что при таком освещении Луна должна находиться в вершине прямого угла в треугольнике, образованном Землей, Луной и Солнцем. Завизировав направление на Солнце и границы освещенной части Луны, а также воспользовавшись некоторыми исходными данными о размерах Луны, Земли и некоторыми другими сведениями, с большей или меньшей точностью установленными им самим и его предшественниками, Аристарх сделал важные вычисления, оставившие определенный след в античной астрономии. В этом отчетливо проявляется возможность использовать математические построения для вычислений, дополняющих и продолжающих практические астрономические измерения.
Таким образом, использование математики позволяло делать расчеты все более и более точными, а также заменять некоторые неосуществимые по разным причинам измерения вычислениями и, что особенно важно, придавало научным знаниям систематический, упорядоченный, научный характер.
Разумеется, применение математики в астрономии, механике и физике в античном мире было несравненно менее эффективным и распространенным, чем в наши дни. Однако следует специально подчеркнуть, что именно в эпоху античности впервые был сделан шаг к фундаментальному изменению роли математики в процессе познания. Этот шаг, по моему мнению, связан прежде всего с именем александрийского астронома Клавдия Птолемея, жившего во II веке н. э.
Великая историческая заслуга Птолемея заключалась в том, что он впервые в истории астрономии да, пожалуй, и науки вообще попытался создать единую систему знаний, относящуюся к единой области — движению небесных светил. Птолемей стремился объединить в рамках единой системы механические основы движения светил, заимствованные у Аристотеля, эмпирические наблюдения, производившиеся его многочисленными предшественниками в Греции и в странах древней Азии, а также достижения современной ему математики. Что еще важнее, он попытался подойти к рассматриваемым явлениям с единой математической точки зрения и создать для каждого движущегося небесного светила — Солнца и известных ему планет — геометрическую модель движения. Правда, его система страдала рядом серьезных недостатков, справедливо подмеченных как арабскими астрономами, так и особенно Коперником, который отмечал слабость математических основ системы Птолемея. Тем не менее первая историческая попытка изложить астрономию на математической основе, позволяющей хотя бы приблизительно вычислять и предсказывать движение светил, произвело столь сильное впечатление на современников и последователей Птолемея, что, несмотря на множество недостатков и несоответствия более точным наблюдениям, система эта просуществовала без изменения почти тринадцать столетий.
В античной науке математику, так сказать, прилагали для оформления знаний, которые были получены часто без ее помощи. Она позволяла точнее и определеннее говорить о вещах и процессах, о которых можно было говорить и на обычном, повседневном языке, языке наблюдения, здравого смысла.
Напротив, в науке Нового времени математика все чаще обнаруживает свои новые возможности; она превращается в язык формул и формальных преобразований, дающий возможность выразить знания не только о ненаблюдаемых, но часто и о принципиально не наглядных явлениях.
Наконец, еще одна замечательная особенность математики заключается в силе абстракций. Отвлекаясь от качественного разнообразия предметов, математика позволяет изучать сходные структуры самых различных объективных систем. Я уже рассказывал вам, как Максвелл воспользовался уравнениями гидродинамики для описания сходных свойств и отношений совершенно другого физического явления— электромагнетизма. Число подобных примеров не трудно увеличить. Достаточно вспомнить, что некоторые уравнения механики, например для соударения чрезвычайно малых упругих шариков, могут при известных условиях использоваться для описания движения молекул газов.
Итак, можно сделать выводы:
1. Математика превращает науку
в систематическое,
2. Она позволяет придать нашим
наблюдениям с помощью
3. Она позволяет сформулировать знания о принципиально не наглядных и не наблюдаемых явлениях.
4. Она позволяет точно описывать и изучать сложные системы.
Античная философия
Греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, диалог велся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесен античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: “дано — требуется доказать — доказательство” (в то время как в древнеегипетской и вавилонской математике схема: “делай так – смотри, ты сделал правильно”).