Математическое моделирование

Автор: Пользователь скрыл имя, 11 Декабря 2011 в 20:20, реферат

Описание работы

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

Содержание

1. Введение..............................................................................................................3
2. Основные понятия теории моделирования…………………………………..5
3. Этапы и цели компьютерного математического моделирования………….8
4. Принципы моделирования.……………………………...…………………...11
5. Заключение……………………………………………………………………13
6. Список литературы…………………………

Работа содержит 1 файл

Моделирование.doc

— 83.00 Кб (Скачать)

     Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

     Когда математическая модель сформулирована, выбираем метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.

     Разработка  алгоритма и составление программы для ЭВМ - это творческий и трудно формализуемый процесс. Из языков программирования многие профессионалы-физики, например, до сих пор предпочитают FORTRAN как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математической ориентации. В ходу и такие языки, как PASCAL, BASIC, С - в зависимости от характера задачи и склонностей программиста.

     После составления программы решаем с  ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной. Программистский фольклор полон историй об ошибках на этом пути.

     Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

 

     

  1. Принципы  моделирования
 

     Начнем  с того, что рассмотрим основные принципы моделирования, в сжатой форме  отражающие тот достаточно богатый  опыт, который накоплен к настоящему времени в области разработки и использования математических моделей. 

п/п

Наименование  принципа Описание принципа
1 Принцип информационной достаточности. При полном отсутствии информации об исследуемой системе  построение ее модели невозможно. При наличии полной информации ее моделирование лишено смысла. Существует некоторый критический уровень априорных сведений о системе (уровень информационной достаточности), при достижении которого может быть построена ее адекватная модель.
2 Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования с вероятностью, существенно отличающейся от нуля, и за конечное время. Обычно задают некоторое пороговое значение P0 вероятности достижения цели моделирования P(t), а также приемлемую границу t0 времени достижения этой цели. Модель считают осуществимой, если может быть выполнено условие P(t0)≥ P0.
3 Принцип множественности моделей. Данный принцип, несмотря на его порядковый номер, является ключевым. Речь идет о том, что создаваемая модель должна отражать в первую очередь те свойства реальной системы (или явления), которые влияют на выбранный показатель эффективности. Соответственно при использовании любой конкретной модели признаются лишь некоторые стороны реальности.
4 Принцип агрегирования. В большинстве  случаев сложную систему можно представить состоящей из агрегатов (подсистем), для адекватного математического описания которых оказываются пригодными некоторые стандартные математические схемы. Принцип агрегирования позволяет, кроме того, достаточно гибко перестраивать модель в зависимости от задач исследования.
5 Принцип параметризации. В ряде случаев  моделируемая система имеет в  своем составе некоторые относительно изолированные подсистемы, характеризующиеся определенным параметром, в том числе векторным. При необходимости зависимость значений этих величин от ситуации может задаваться в виде таблицы, графика или аналитического выражения (формулы).
 

 

     

  1. Заключение
 

     Абстрактное моделирование с помощью компьютеров - вербальное, информационное, математическое - в наши дни стало одной из информационных технологий, в познавательном плане исключительно мощной. Изучение компьютерного математического моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными.

     Отметим, что, говоря о математических моделях, мы имеем в виду сугубо прикладной аспект. В современной математике есть достаточно формализованный подход к понятию «математическая модель». Внутри него вполне допустимо игнорировать вопрос о связи математики с реалиями физического мира. В этом подходе моделями являются, например, система целых чисел, система действительных чисел, евклидова геометрия, алгебраическая группа, топологическое пространство и т.д. К исследованию таких формальных моделей вполне можно подключить компьютеры, но все равно это останется «чистой» математикой. В данной главе термин «математическая модель» увязывается с некоторой предметной областью, сущностью окружающего мира.

     Компьютерное  математическое моделирование в разных своих проявлениях использует практически весь аппарат современной математики.

     Практически во всех науках о природе, живой и  неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

 

  1. Список  литературы
 
  1. Могилев А.В., Пак Н.И., Хеннер Е.К. «Информатика» Москва «Академа» 2001 г.
  2. Белошапка В. К. Информационное моделирование в примерах и задачах. -Омск: Из-во ОГПИ, 1992.
  3. Математическое моделирование: Пер. с англ. / Под ред. Дж. Эндрюса, Р. Мак-Лоуна. - М.: Мир, 1979.
  4. Матюшкин-Герке А. Учебно-прикладные задачи в курсе информатики. Информатика и образование, № 3-4, 5-6, 1992.

Информация о работе Математическое моделирование