Автор: Пользователь скрыл имя, 11 Декабря 2011 в 20:20, реферат
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.
1. Введение..............................................................................................................3
2. Основные понятия теории моделирования…………………………………..5
3. Этапы и цели компьютерного математического моделирования………….8
4. Принципы моделирования.……………………………...…………………...11
5. Заключение……………………………………………………………………13
6. Список литературы…………………………
Государственное образовательное учреждение
Высшего
профессионального образования
Магнитогорский
Государственный Технический
им. Г.И.
Носова
Кафедра
И и Ит
РЕФЕРАТ
№2
по дисциплине
«Информационные
технологии для обеспечения
жизнедеятельности»
на тему:
«Математическое
моделирование»
студентки Ушениной Надежды
специальность 280101 (330100)
безопасность жизнедеятельности
факультет
заочный, V курс
проверил преподаватель
Калугина
О.Б.
Магнитогорск
2011
СОДЕРЖАНИЕ
1.
Введение......................
2. Основные понятия теории моделирования…………………………………..5
3. Этапы и цели компьютерного математического моделирования………….8
4. Принципы
моделирования.……………………………...……
5.
Заключение……………………………………………………
6.
Список литературы……………………………………………………
Абстрактное
моделирование с помощью
Говоря о математических моделях, имеется в виду сугубо прикладной аспект. В современной математике есть достаточно формализованный подход к понятию «математическая модель». Внутри него вполне допустимо игнорировать вопрос о связи математики с реалиями физического мира. В этом подходе моделями являются, например, система целых чисел, система действительных чисел, евклидова геометрия, алгебраическая группа, топологическое пространство и т.д. К исследованию таких формальных моделей вполне можно подключить компьютеры, но все равно это останется «чистой» математикой.
Компьютерное математическое моделирование в разных своих проявлениях использует практически весь аппарат современной математики.
С понятием «модель» мы сталкиваемся с детства. Игрушечный автомобиль, самолет или кораблик для многих были любимыми игрушками, равно как и плюшевый медвежонок или кукла. В развитии ребенка, в процессе познания им окружающего мира, такие игрушки, являющиеся, по существу, моделями реальных объектов, играют важную роль. В подростковом возрасте для многих увлечение авиамоделированием, судомоделированием, собственноручным созданием игрушек, похожих на реальные объекты, оказало влияние на выбор жизненного пути.
Что же такое модель? Что общего между игрушечным корабликом и рисунком на экране компьютера, изображающим сложную математическую абстракцию? И все же общее есть: и в том, и в другом случае мы имеем образ реального объекта или явления, «заместителя» некоторого «оригинала», воспроизводящего его с той или иной достоверностью и подробностью. Или то же самое другими словами: модель является представлением объекта в некоторой форме, отличной от формы его реального существования.
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.
В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, самолетик, домик из кубиков и множество других натурных моделей. Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.
В прикладных областях различают следующие виды абстрактных моделей:
Итак,
укрупненная классификация
Граница между вербальными, математическими и информационными моделями может быть проведена весьма условно; вполне возможно считать информационные модели подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным.
Существуют и иные подходы к классификации абстрактных моделей; общепринятая точка зрения здесь еще не установилась. В частности, есть тенденция резкого расширения содержания понятия «информационная модель», при котором информационное моделирование включает в себя и вербальные, и математические модели.
Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.
Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.
Математическое
моделирование как таковое
Первый
этап - определение целей
1) модель нужна для того, чтобы понять как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
3)
модель нужна для того, чтобы
прогнозировать прямые и
Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.
Наконец,
прогнозирование последствий
Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые (входные) величины через x1, x2, ..., xn; вторые (выходные) через y1, y2, ..., yk. Символически поведение объекта или процесса можно представить в виде формулы:
где Fj - те действия, которые следует произвести над входными параметрами, чтобы получить результаты. Хотя запись напоминает о функции, мы здесь используем ее в более широком смысле. Лишь в простейших ситуациях F(x) есть функция в том смысле, который вкладывается в это понятие в учебниках математики чтобы это подчеркнуть, лучше использовать по отношению к F(x) термин «оператор».
Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель.