Автор: Пользователь скрыл имя, 03 Апреля 2013 в 01:23, дипломная работа
Возникновение понятия группы стало новым витком в алгебре и началом абстрактной алгебры как таковой. Истоки понятия группы обнаруживаются в нескольких дисциплинах, главная из которых – теория решений алгебраических уравнений в радикалах. В 1771 г. французские математики Ж. Лагранж и А. Вандермонд впервые для нужд этой теории применили подстановки. Затем, в ряде работ итальянского математика П. Руффини (1
Введение
Глава 1. Используемые обозначения, определения и известные результаты
§1. Группы и их подгруппы. Централизаторы и нормализаторы
§2. Разрешимые, сверхразрешимые, нильпотентные и холловы группы
§3. Прямое, полупрямое произведения и сплетение групп
Глава 2. Классы Фиттинга и их свойства
§1. Простейшие свойства классов Фиттинга
§2. F-радикалы и F-инъекторы. Нормальные классы Фиттинга
1. F-радикалы и F-инъекторы
2. Нормальные классы Фиттинга
§3. Произведение классов Фиттинга
§4. Практические примеры
Заключение
Библиография