Автор: Пользователь скрыл имя, 29 Октября 2011 в 22:20, курсовая работа
Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д.
1. Введение: классификация игр 3
2. Матричные игры. Решение матричных игр в чистых стратегиях 4
3. Смешанное расширение матричной игры 6
4. Свойства решений матричных игр 7
5. Игры порядка 2 х 2 10
6. Графический метод решения игр 2 х n И m х 2 11
7. Сведение матричной игры к задаче линейного программирования 13
8. Теория Нэша
Далее, из свойства 5 следует, что всякое решение игры G2 = (Х \ {4}, Y \ {1}, А1) является решением игры G1. В матричной форме игру G2 можно представить матрицей
.
Очевидно, что элементы второй строки “ ³” полусуммы соответствующих элементов первой и третьей строк. Кроме того, элементы третьего столбца матрицы А2 “ ³“ соответствующих элементов второго столбца. Применяя свойство 5 получим, что всякое решение игры G3 = (Х \ {4,2}, Y \ {1,4}, А2) является решением игры G2, а следовательно и игры G1. Игра G3 определяется матрицей
.
Матрица А3 не имеет седловой точки, т.к. не выполнено равенство
= ,
а игра G3 не имеет решения в чистых стратегиях, т.е. оптимальные стратегии игроков являются смешанными. Эти стратегии (в данном случае) легко найти из анализа структуры матрицы А3. Поскольку матрица А3 симметрична, можно предположить, что игроки в оптимальной стратегии используют свои чистые стратегии с равными вероятностями.
Действительно, если игрок 1 выбирает с равными вероятностями стратегии 1 и 3, то при применении любой из двух чистых стратегий игроком 2 математическое ожидание выигрыша игрока 1 будет равным либо
,
либо
.
Аналогично, если игрок 2 использует свои чистые стратегии 2 и 3 с равными вероятностями, то математическое ожидание его проигрыша будет равно . Следовательно, указанные стратегии являются оптимальными в игре G3, а величины – значением игры G3. Из предыдущего следует, что эти стратегии оптимальны и в G1.
Таким
образом, стратегия Х = (
, 0,
, 0) является оптимальной стратегией
игрока 1, стратегия Y = (0,
,
, 0) – оптимальной стратегией игрока
2 в игре G1, а значение игры
G1 равно
. В силу свойства 4 решением игры
G будет тройка (Х,Y,
).
Игры
порядка 2 х 2.
В общем случае игра 2 2 определяется матрицей
Прежде всего необходимо проверить, есть ли у данной игры седловая точка. Если да, то игра имеет решение в чистых стратегиях, причём оптимальными стратегиями игроков 1 и 2 соответственно будут чистая максиминная и чистая минимаксная стратегии. Если же игра с матрицей выигрышей А не имеет чистых стратегий, то оба игрока имеют только такие оптимальные стратегии, которые используют все свои чистые стратегии с положительными вероятностями. В противном случае один из игроков (например 1) имеет чистую оптимальную стратегию, а другой – только смешанные. Не ограничивая общности, можно считать, что оптимальной стратегией игрока 1 является выбор с вероятностью 1 первой строки. Далее, по свойству 1 следует, что а11 = а12 = u и матрица имеет вид
.
Легко видеть, что для матриц такого вида одна из стратегий игрока 2 является доминируемой. Следовательно, по свойству 4 этот игрок имеет чистую стратегию, что противоречит предположению.
Пусть Х = (x, 1 - x) – оптимальная стратегия игрока 1. Так как игрок 2 имеет смешанную оптимальную стратегию, из свойства 1 получим, что (см. также свойство 7)
Отсюда следует, что при u ¹ 0 столбцы матрицы А не могут быть пропорциональны с коэффициентом пропорциональности, отличным от единицы. Если же коэффициент пропорциональности равен единице, то матрица А принимает вид
и игрок 1 имеет чистую оптимальную стратегию (он выбирает с вероятностью 1 ту из строк, элементы которой не меньше соответствующих элементов другой), что противоречит предположению. Следовательно, если u ¹ 0 и игроки имеют только смешанные оптимальные стратегии, то определитель матрицы А отличен от нуля. Из этого следует, что последняя система уравнений имеет единственное решение. Решая её, находим
;
.
Аналогичные рассуждения приводят нас к тому, что оптимальная стратегия игрока 2 Y = (h, 1 - h) удовлетворяет системе уравнений
откуда
Графический
метод решения
игр 2 х
n И m х 2.
Поясним метод
на примерах.
Пример 1.
Рассмотрим игру, заданную платёжной матрицей.
На плоскости хОy введём систему координат и на оси Ох отложим отрезок единичной длины А1, А2, каждой точке которого поставим в соответствие некоторую смешанную стратегию игрока 1 (х, 1 - х). В частности, точке А1 (0;0) отвечает стратегия А1, точке А2 (1;0) – стратегия А2 и т.д.
y
11
7
М N 5
3
2
В точках А1 и А2 восстановим перпендикуляр и на полученных прямых будем откладывать выигрыш игроков. На первом перпендикуляре (в данном случае он совпадает с осью 0y) отложим выигрыш игрока 1 при стратегии А1, а на втором – при стратегии А2. Если игрок 1 применит стратегию А1, то выиграет при стратегии В1 игрока 2 – 2, при стратегии В2 – 3, а при стратегии В3 – 11. Числам 2, 3, 11 на оси 0х соответствуют точки В1, В2 и В3.
Если же игрок 1 применит стратегию А2, то его выигрыш при стратегии В1 равен 7, при В2 – 5, а при В3 – 2. Эти числа определяют точки В¢1, В2¢, В3¢ на перпендикуляре, восстановленном в точке А2.Соединяя между собой точки В1 и В¢1, В2 и В¢2, В3 и В¢3 получим три прямые, расстояние до которых от оси 0х определяет средний выигрыш при любом сочетании соответствующих стратегий. Например, расстояние от любой точки отрезка В1В¢1 до оси 0х определяет средний выигрыш u1 при любом сочетании стратегий А1 А2 (с частотами х и 1–х) и стратегией В1 игрока 2. Это расстояние равно
2х1 + 6(1 - х2) = u1
(Вспомните
планиметрию и рассмотрите
Соответствующие два уравнения имеют вид
.
Следовательно Х = ( ; ), при цене игры u = . Таким образом мы можем найти оптимальную стратегию при помощи матрицы
Оптимальные стратегии для игрока 2 можно найти из системы
и, следовательно,
Y = (0;
;
). (Из рисунка видно, что стратегия
B1 не войдёт в оптимальную стратегию.
Пример 2. Найти решение игры, заданной матрицей
x
6 К 6
4
2
1
y
Решение. Матрица имеет размерность 2 х 4. Строим прямые, соответствующие стратегиям игрока 1. Ломанная А1 K А¢4 соответствует верхней границе выигрыша игрока 1, а отрезок N K –цене игры. Решение игры таково
U
= (
;
); Х = (
; 0; 0;
); u =
.
Сведение
матричной игры к
задаче линейного
программирования
Предположим, что цена игры положительна (u > 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицы выигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроков не изменяются.
Итак, пусть дана матричная игра с матрицей А порядка m х n. Согласно свойству 7 оптимальные смешанные стратегии х = (х1, ..., хm), y = (y1, ..., yn) соответственно игроков 1 и 2 и цена игры u должны удовлетворять соотношениям.
Разделим все уравнения и неравенства в (1) и (2) на u (это можно сделать, т.к. по предположению u > 0) и введём обозначения :
, ,
Тогда (1) и (2) перепишется в виде :
, , , ,
, , , .
Поскольку первый игрок стремится найти такие значения хi и, следовательно, pi , чтобы цена игры u была максимальной, то решение первой задачи сводится к нахождению таких неотрицательных значений pi , при которых
, .