Элементы теории игр

Автор: Пользователь скрыл имя, 03 Декабря 2011 в 16:52, курсовая работа

Описание работы

Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д.
В зависимости от количества игроков различают игры двух и n игроков. Первые из них наиболее изучены. Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения. Чем больше игроков - тем больше проблем.

Содержание

1. Введение: классификация игр 3
2. Матричные игры. Решение матричных игр в чистых стратегиях 4
3. Смешанное расширение матричной игры 6
4. Свойства решений матричных игр 7
5. Игры порядка 2 х 2 10
6. Графический метод решения игр 2 х n И m х 2 11
7. Сведение матричной игры к задаче линейного программирования 13
8. Теория Нэша

Работа содержит 1 файл

Теория игр.doc

— 640.00 Кб (Скачать)

Далее, из свойства 5 следует, что всякое решение  игры G2 = (Х \ {4}, Y \ {1}, А1) является решением игры G1. В матричной форме игру G2 можно представить матрицей

.

Очевидно, что элементы второй строки “ ³” полусуммы соответствующих элементов первой и третьей строк. Кроме того, элементы третьего столбца матрицы А2³“ соответствующих элементов второго столбца. Применяя свойство 5 получим, что всякое решение игры G3 = (Х \ {4,2}, Y \ {1,4}, А2) является решением игры G2, а следовательно и игры G1. Игра G3 определяется матрицей

.

Матрица А3 не имеет седловой точки, т.к. не выполнено равенство

= ,

а игра G3 не имеет решения в чистых стратегиях, т.е. оптимальные стратегии игроков являются смешанными. Эти стратегии (в данном случае) легко найти из анализа структуры матрицы А3. Поскольку матрица А3 симметрична, можно предположить, что игроки в оптимальной стратегии используют свои чистые стратегии с равными вероятностями.

Действительно, если игрок 1 выбирает с равными вероятностями  стратегии 1 и 3, то при применении любой из двух чистых стратегий игроком 2 математическое ожидание выигрыша игрока 1 будет равным либо

,

либо

. 

Аналогично, если игрок 2 использует свои чистые стратегии 2 и 3 с равными вероятностями, то математическое ожидание его проигрыша будет равно . Следовательно, указанные стратегии являются оптимальными в игре G3, а величины – значением игры G3. Из предыдущего следует, что эти стратегии оптимальны и в G1.

Таким образом, стратегия Х = ( , 0, , 0) является оптимальной стратегией игрока 1, стратегия Y = (0, , , 0) – оптимальной стратегией игрока 2 в игре G1, а значение игры G1 равно . В силу свойства 4 решением игры G будет тройка (Х,Y, ). 

Игры  порядка 2 х 2. 

    В общем случае игра 2 2 определяется матрицей

   Прежде всего необходимо проверить, есть ли у данной игры седловая точка. Если да, то игра имеет решение в чистых стратегиях, причём оптимальными стратегиями игроков 1 и 2 соответственно будут чистая максиминная и чистая минимаксная стратегии. Если же игра с матрицей выигрышей А не имеет чистых стратегий, то оба игрока имеют только такие оптимальные стратегии, которые используют все свои чистые стратегии с положительными вероятностями. В противном случае один из игроков (например 1) имеет чистую оптимальную стратегию, а другой – только смешанные. Не ограничивая общности, можно считать, что оптимальной стратегией игрока 1 является выбор с вероятностью 1 первой строки. Далее, по свойству 1 следует, что а11 = а12 = u и матрица имеет вид

.

Легко видеть, что для матриц такого вида одна из стратегий игрока 2 является доминируемой. Следовательно, по свойству 4 этот игрок имеет чистую стратегию, что противоречит предположению.

Пусть Х = (x, 1 - x) – оптимальная стратегия игрока 1. Так как игрок 2 имеет смешанную оптимальную стратегию, из свойства 1 получим, что (см. также свойство 7)

Отсюда  следует, что при u ¹ 0 столбцы матрицы А не могут быть пропорциональны с коэффициентом пропорциональности, отличным от единицы. Если же коэффициент пропорциональности равен единице, то матрица А принимает вид

и игрок 1 имеет чистую оптимальную стратегию (он выбирает с вероятностью 1 ту из строк, элементы которой не меньше соответствующих  элементов другой), что противоречит предположению. Следовательно, если u ¹ 0 и игроки имеют только смешанные оптимальные стратегии, то определитель матрицы А отличен от нуля. Из этого следует, что последняя система уравнений имеет единственное решение. Решая её, находим

;

.

Аналогичные рассуждения приводят нас к тому, что оптимальная стратегия игрока 2 Y = (h, 1 - h) удовлетворяет системе уравнений

откуда

 

Графический метод решения  игр 2 х n И m х 2. 

Поясним метод  на примерах. 

Пример 1.

Рассмотрим игру, заданную платёжной матрицей.

На плоскости  хОy введём систему координат и на оси Ох отложим отрезок единичной длины А1, А2, каждой точке которого поставим в соответствие некоторую смешанную стратегию игрока 1 (х, 1 - х). В частности, точке А1 (0;0) отвечает стратегия А1, точке А2 (1;0) – стратегия А2 и т.д.

      

      y 
 

     11 
 
 
 

                                                    7  

                      М                  N            5

                    

      3

      2                                 u              2

                       

   В точках А1 и А2 восстановим перпендикуляр и на полученных прямых будем откладывать выигрыш игроков. На первом перпендикуляре (в данном случае он совпадает с осью 0y) отложим выигрыш игрока 1 при стратегии А1, а на втором – при стратегии А2. Если игрок 1 применит стратегию А1, то выиграет при стратегии В1 игрока 2 – 2, при стратегии В2 – 3, а при стратегии В3 – 11. Числам 2, 3, 11 на оси соответствуют точки В1, В2 и В3.

   Если же игрок 1 применит стратегию А2, то его выигрыш при стратегии В1 равен 7, при В2 – 5, а при В3 – 2. Эти числа определяют точки В¢1, В2¢, В3¢ на перпендикуляре, восстановленном в точке А2.Соединяя между собой точки В1 и В¢1, В2 и В¢2, В3 и В¢3 получим три прямые, расстояние до которых от оси определяет средний выигрыш при любом сочетании соответствующих стратегий. Например, расстояние от любой точки отрезка В1В¢1 до оси определяет средний выигрыш u1 при любом сочетании стратегий А1 А2 (с частотами х и 1–х) и стратегией В1 игрока 2. Это расстояние равно

2х1 + 6(1 - х2) = u1

(Вспомните  планиметрию и рассмотрите трапецию  А1 B1 B¢1 A2). Таким образом, ординаты точек, принадлежащих ломанной В1 M N В¢3 определяют минимальный выигрыш игрока 1 при применении им любых смешанных стратегий. Эта минимальная величина является максимальной в точке N; следовательно этой точке соответствует оптимальная стратегия Х* = (х, 1-х), а её ордината равна цене игры u. Координаты точки N находим как точку пересечения прямых В2 B¢2 и В3 B¢3.

Соответствующие два уравнения имеют вид

.

Следовательно Х = ( ; ), при цене игры u = . Таким образом мы можем найти оптимальную стратегию при помощи матрицы

Оптимальные стратегии для игрока 2 можно найти  из системы

и, следовательно, Y = (0; ; ). (Из рисунка видно, что стратегия B1 не войдёт в оптимальную стратегию. 
 
 

Пример 2. Найти решение игры, заданной матрицей

 
 
 
 
 
 
 

         x                                                     8

                                                             7

        6                                К                     6

 

                                                              5

        4 
 

                                        u 

        2 

        1 

                    y 

Решение. Матрица имеет размерность 2 х 4. Строим прямые, соответствующие стратегиям игрока 1. Ломанная А1 K А¢4 соответствует верхней границе выигрыша игрока 1, а отрезок N K –цене игры. Решение игры таково

U = ( ; );   Х = ( ; 0; 0; );  u = . 
 

Сведение  матричной игры к  задаче линейного  программирования 

Предположим, что  цена игры положительна (u > 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицы выигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроков не изменяются.

Итак, пусть дана матричная игра с матрицей А порядка m х n. Согласно свойству 7 оптимальные смешанные стратегии х = (х1, ..., хm), y = (y1, ..., yn) соответственно игроков 1 и 2 и цена игры u должны удовлетворять соотношениям.

                      

                      

Разделим все  уравнения и неравенства в (1) и (2) на u (это можно сделать, т.к. по предположению u > 0) и введём обозначения :

   ,      ,

Тогда (1) и (2) перепишется в виде :

,   ,   ,   ,

,   ,   ,   .

Поскольку первый игрок стремится найти такие  значения хi и, следовательно, pi , чтобы цена игры u была максимальной, то решение первой задачи сводится к нахождению таких неотрицательных значений pi , при которых

.                     

Информация о работе Элементы теории игр