Автор: Пользователь скрыл имя, 28 Марта 2013 в 16:26, реферат
Одним из важнейших направлений эконометрики является построение прогнозов по различным экономическим показателям. Основной задачей эконометрики будем считать использование статистических и математических методов с целью найти эмпирическое представление результатов экономической теории, а затем их подтвердить или опровергнуть.
Однако математические методы для представления результатов экономической теории используются также в математической экономике. Разделение «сфер интересов» эконометрики и математической экономики – это различие в критериях качества полученных моделей. В эконометрике построенная модель тем лучше, чем лучше она описывает имеющиеся эмпирические данные. В математической экономике соответствие модели эмпирическим данным не всегда свидетельствует о ее качестве, и наоборот, не всегда требуется добиваться этого соответствия.
Введение………………………………………...………………………..
Основные понятия в теории временных рядов ………………………..
3
5
Цели, этапы и методы анализа временных рядов……………………...
6
Модели тренда и методы его выделения из временного ряда………..
8
Порядок анализа временных рядов……………………………………..
10
Графические методы анализа временных рядов……………………....
12
Заключение……….………………………………………………………
Список литературы…………………………………
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ,
МОЛОДЕЖИ И СПОРТА УКРАИНЫ
ГВУЗ «КИЕВСКИЙ НАЦИОНАЛЬНЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ВАДИМА ГЕТЬМАНА»
КРЫМСКИЙ ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
РЕФЕРАТ
по дисциплине: ЭКОНОМЕТРИКА
тема ВРЕМЕННЫЕ РЯДЫ В ЭКОНОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЯХ
Выполнил:
студент 1 курса
заочного отделения
группа МО-11/12
Потоля Евгений Васильевич
Проверил:
Симферополь 2013
Содержание
Введение………………………………………...…………
|
3 5 |
|
6 |
|
8 |
|
10 |
|
12 |
Заключение……….………………………………………… Список литературы………………………………… . |
14 15 |
Введение
Эконометрика – это наука, в которой на базе реальных статистических данных строятся, анализируются и совершаются математические модели реальных экономических явлений.
Одним из важнейших направлений
эконометрики является построение прогнозов
по различным экономическим
Однако математические методы для представления результатов экономической теории используются также в математической экономике. Разделение «сфер интересов» эконометрики и математической экономики – это различие в критериях качества полученных моделей. В эконометрике построенная модель тем лучше, чем лучше она описывает имеющиеся эмпирические данные. В математической экономике соответствие модели эмпирическим данным не всегда свидетельствует о ее качестве, и наоборот, не всегда требуется добиваться этого соответствия.
Применение статистических
методов для анализа
Однако существует несколько видов количественного анализа в экономике, ни один из которых по отдельности не должен ассоциироваться с эконометрикой. Так, эконометрика – это не экономическая статистика. Эконометрика – это и не раздел общей экономической теории, хотя значительная часть экономической теории определенно имеет количественный характер. Слово «эконометрика» не является также простым эквивалентом фразы «применение математики в экономике». Как показывает опыт, все три перечисленных дисциплины, – статистика, экономическая теория и математика, - необходимы, но ни одной из них, взятой по отдельности, не достаточно для реального понимания количественных взаимосвязей в современной экономической жизни. Именно объединение всех этих трех дисциплин дает к нему ключ. Именно объединение их и составляет предмет эконометрики.
Временной ряд — это некоторая последовательность чисел (измерений) экономического или бизнес-процесса во времени. Его элементы измерены в последовательные моменты времени, обычно через равные промежутки.
Как правило, составляющие временной ряд числа или элементы временного ряда, нумеруют в соответствии с номером момента времени, к которому они относятся. Таким образом, порядок следования элементов временного ряда весьма существен.
Расширенное понятие временного ряда. Понятие временного ряда часто толкуют расширительно. Например, одновременно могут регистрироваться несколько характеристик упомянутого процесса. В этом случае говорят о многомерных временных рядах. Если измерения производятся непрерывно, говорят о временных рядах с непрерывным временем, или случайных процессах. Наконец, текущая переменная может иметь не временной, а какой-нибудь иной характер, например пространственный. В этом случае говорят о случайных полях. Примеры временных рядов. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.
Временные ряды называются стационарными, если числовые характеристики ряда являются постоянными на любом участке временного ряда. Реально в жизни это не так, но существуют методы, позволяющие преобразовать временной ряд и привести его к стационарному.
Цели анализа временных рядов. При практическом изучении временных радов на основании экономических данных на определенном промежутке времени эконометрист должен сделать выводы о свойствах этого ряда и о вероятностном механизме, порождающем этот ряд. Чаще всего при изучении временных рядов ставятся следующие цели:
1. Краткое (сжатое)
описание характерных
2. Подбор статистической модели, описывающей временной ряд;
3. Предсказание будущих значений на основе прошлых наблюдений;
4. Управление
процессом, порождающим
На практике эти и подобные цели достижимы далеко не всегда и далеко не в полной мере. Часто этому препятствует недостаточный объем наблюдений из-за ограниченного времени наблюдений. Еще чаще — изменяющаяся с течением времени статистическая структура временного ряда.
Стадии анализа временных рядов
1. Графическое
представление и описание
2. Выделение
и удаление закономерных
3. Выделение
и удаление низко- или
4. Исследование
случайной составляющей
5. Построение (подбор)
математической модели для
6. Прогнозирование будущего развития процесса, представленного временным рядом;
7. Исследование
взаимодействий между различным
Методы анализа временных
1. Корреляционный
анализ, позволяющий выявить
2. Спектральный
анализ, позволяющий находить
3. Сглаживание и фильтрация, предназначенные для преобразования временных рядов с целью удаления из них высокочастотных или сезонных колебаний;
4. Модели авторегрессии
и скользящего среднего, которые
оказываются особенно
5. Прогнозирование,
позволяющее на основе
Простейшие модели тренда. Приведем модели трендов, наиболее часто используемые при анализе экономических временных рядов, а также во многих других областях.
Во-первых, это простая линейная модель
Yt = a0 + a1t
где а0, а1 – коэффициенты модели тренда; t – время.
В качестве единицы времени может быть час, день (сутки), неделя, месяц, квартал или год. Несмотря на свою простоту, оказывается полезной во многих реальных задачах. Если нелинейный характер тренда очевиден, то может подойти одна из следующих моделей:
1. полиномиальная:
Yt =a0 + a1t + a2t2 + a3t3 + a4t4 + …
где значение степени полинома n в практических задачах редко превышает 5;
2. логарифмическая:
Yt= ea0+a1t
Эта модель чаще всего применяется для данных, имеющих тенденцию сохранять
постоянные темпы прироста;
3. логистическая:
A0
Уt =
1+a1e-a2t
4. Гомперца
log(Yt) = a0-a1rt , где 0 < r < 1
Две последние модели задают кривые тренда S-образной формы. Они соответствуют процессам с постепенно возрастающими темпами роста в начальной стадии и постепенно затухающими темпами роста в конце.
Необходимость подобных моделей
обусловлена невозможностью многих
экономических процессов
При прогнозировании тренд используют в первую очередь для долговременных прогнозов. Точность краткосрочных прогнозов, основанных только на подобранной кривой тренда, как правило, недостаточна.
Для оценки и удаления трендов из временных рядов чаще всего используется метод наименьших квадратов. Значения временного ряда рассматривают как отклик (зависимую переменную), а время t — как фактор, влияющий на отклик (независимую переменную).
Для временных рядов характерна взаимная зависимость его членов (по крайней мере, не далеко отстоящих по времени) и это является существенным отличием от обычного регрессионного анализа, для которого все наблюдения предполагаются независимыми. Тем не менее, оценки тренда и в этих условиях обычно оказываются разумными, если выбрана адекватная модель тренда и если среди наблюдений нет больших выбросов. Упомянутые выше нарушения ограничений регрессионного анализа сказываются не столько на значениях оценок, сколько на их статистических свойствах.
Неправильными оказываются и доверительные интервалы для коэффициентов модели, и т.д. В лучшем случае их можно рассматривать как очень приближенные. Это положение может быть частично исправлено, если применять модифицированные алгоритмы метода наименьших квадратов, такие как взвешенный метод наименьших квадратов. Однако для этих методов требуется дополнительная информация о том, как меняется дисперсия наблюдений или их корреляция. Если же такая информация недоступна, исследователям приходится применять классический метод наименьших квадратов, несмотря на указанные недостатки.
Цель анализа временных рядов обычно заключается в построении математической модели ряда, с помощью которой можно объяснить его поведение и осуществить прогноз на определенный период времени. Анализ временных рядов включает следующие основные этапы.
Построение и изучение графика. Анализ временного ряда обычно начинается с построения и изучения его графика. Если нестационарность временного ряда очевидна, то первым делом надо выделить и удалить нестационарную составляющую ряда. Процесс удаления тренда и других компонент ряда, приводящих к нарушению стационарности, может проходить в несколько этапов.
На каждом из
них рассматривается ряд
Информация о работе Временные ряды в эконометрических исследованиях