Автор: Пользователь скрыл имя, 19 Декабря 2012 в 21:43, реферат
Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных. С точки зрения инженерных расчетов методы оптимизации позволяют выбрать наилучший вариант конструкции, наилучшее распределение ресурсов и т.д.
В процессе решения задачи оптимизации обычно необходимо найти оптимальные значения некоторых параметров, определяющих данную задачу. При решении инженерных задач их принято называтьпроектными параметрами, а в экономических задачах их обычно называют параметрами плана.
На данном этапе кроме нахождения решения всякий раз, когда это возможно, должно быть обеспечено также получение дополнительной информации о возможных изменениях решения при изменение параметров системы. Эту часть исследования называют анализом модели на чувствительность. Он необходим, например, в тех случаях, когда некоторые характеристики исследуемой системы не поддаются точной оценке. В такой ситуации весьма важно исследовать возможные изменения оптимального решения в зависимости от соответствующих параметров системы в некоторых интервалах их количественных значений.
А теперь познакомимся с одной моделью из математического аппарата исследования экономических процессов - сетевые модели планирования и управления.
Календарное планирование процессов сетевыми методами.
Календарное планирование - планирование во времени. Здесь общепринята следующая терминология.
Программа - определяет совокупность взаимосвязанных операций, которые необходимо выполнить в определенном порядке, чтобы достигнуть поставленной в программе цели.
Операция программы обычно рассматривается как работа, для выполнения которой требуются затраты времени и ресурсов. Операции логически упорядочены в том смысле, что одни операции нельзя начать, прежде чем не будут завершены другие. Как правило, совокупность операций программы не повторяется.
Задача календарного
планирования заключается в минимизации
продолжительности выполнения программы
с учетом экономических факторов
использования имеющихся
Решается задача календарного планирования с помощью двух аналитических методов структурного и календарного планирования и оперативного управления программами. Эти два метода получили название
- метод критического пути (МКП), предложен фирмой E.I. du Pont de Nemours & Company для управления программами строительства,
и
- метод оценки и
пересмотра программ(ПЕРТ), разработан
консультативной фирмой по
Оба метода основное внимание уделяют временному аспекту выполнения программы и в конечном счете определяют календарный план программы. Они очень схожи между собой. Самым существенным различием является то, что в методе оценке МКП продолжительности операций предполагаются детерминированными величинами, а в методе ПЕРТ - случайными. В настоящее время оба метода составляют единый метод сетевого планирования и управления (СПУ) программами.
Сетевое планирование и управление программами включает три основных этапа: структурное планирование, календарное планирование и оперативное планирование.
Этап структурного планирования начинается с разбиения программы на четко определенные операции. Затем определяется оценка продолжительности операций и строится сетевая модель (сетевой график, стрелочная диаграмма), каждая дуга (стрелка) которой отображает работу. Вся сетевая модель в целом является графическим представлением взаимосвязей операций программы. Построение сетевой модели на этапе структурного планирования позволяет детально проанализировать все операции и внести улучшения в структуру программы еще до начала ее реализации.
Конечной целью этапа календарного планирования является построение календарного графика, определяющего моменты начала и окончания каждой операции, а также ее взаимосвязи с другими операциями программы. Кроме того, календарный график дает возможность выявлять критические операции (с точки зрения времени), которым необходимо уделять особое внимание, чтобы закончить программу в назначенный срок. Что касается некритических операций, то календарный план позволяет определять их резервы времени, которые можно выгодно использовать при задержке выполнения таких операций или с позиций эффективного использования ресурсов.
Заключительным этапом является оперативное управление процессом реализации программы. Этот этап включает использование сетевой модели и календарного графика для составления периодических отчетов о ходе выполнения программы. Сетевая модель подвергается анализу и в случае необходимости корректируется. В этом случае разрабатывается новый календарный план выполнения остальной части программы.
Сетевая модель.
Сетевая модель отображает взаимосвязи между операциями и порядок их выполнения.
Для представления операции используется стрелка, направление которой соответствует процессу реализации программы во времени.
Отношение упорядочения между операциями задается с помощью событий. Событие определяется как момент времени, когда завершаются одни операции и начинаются другие.
Начальная и конечная точка любой операции описываются, таким образом, парой событий, которые обычно называют начальным событием и конечнымсобытием.
Операции, выходящие из некоторого события, не могут начинаться, пока не будут завершены все операции, входящие в это событие.
Каждое событие - это узел(вершина), а каждая операция - это ориентированная дуга.
Типичный пример графического изображения операции i, j с начальным событием i и конечным событием j.
Другой пример, из которого видно, что
для возможности начала операции
(3,4) требуется завершение операций
(1,3) и (2,3).
Протекание операций во времени задается путем нумерации событий, причем номер начального события всегда меньше номера конечного.
Правила построения сетевой модели.
Правило 1. Каждая операция в сети представляется одной и только одной дугой(стрелкой).
Ни одна из операций не должна появляться в модели дважды. При этом следует различать случай, когда какая-либо операция разбивается на части; тогда каждая часть изображается отдельной дугой. Так, например, прокладку трубопровода можно расчленить на прокладку отдельных секций и рассматривать прокладку каждой секции как самостоятельную операцию.
Правило 2. Ни одна пара операций не должна определяться одинаковыми начальными и конечными событиями.
Возможность неоднозначного определения операций через события появляется в случае, когда две или большее число операций допустимо выполнять одновременно.
Пример, когда операции А и В имеют одинаковые начальное и конечное события.
Чтобы исключить такую ошибку между
А и конечным(начальным) событием или между
В и конечным(начальным) событием вводится
фиктивная операция D.
В результате операции А и В определяются теперь однозначно парой событий, отличающихся либо номером начального, либо номером конечного события.
Фиктивные операции не требуют затрат ни времени, ни ресурсов.
Они также позволяют правильно отражать логические связи. Предположим, что в некоторой программе операции А и В должны непосредственно предшествовать С, а операции Е непосредственно предшествует только В.
Неправильное отражение этих условий.
Упорядочения между А, В и С показаны правильно, но операции Е непосредственно предшествуют обе операции А и В.
Правильное представление указанных условий достигается через фиктивную операцию D.
Правило 3. При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответ на следующие вопросы.
а) Какие операции необходимо
завершить непосредственно
б) Какие операции должны непосредственно следовать после завершения данной операции?
в) Какие операции могут выполняться одновременно с рассматриваемой?
Пример.
Постройте сетевую модель, включающую операции A, B, C, ... , L, которая отображает следующие отношения упорядочения.
1. А, В и С - исходные операции, которые можно начинать одновременно.
2. А и В предшествуют D.
3. В предшествует E, F и H.
4. F и С предшествуют G.
5. E и H предшествуют I и J.
6. C, D, F, J предшествуют K.
7. K предшествует L.
8. I, G, L - завершение операции программы.
События сети пронумеровать таким образом, чтобы возрастание номеров соответствовало ходу выполнения программы. Использовать три фиктивные операции:
D1 и D2 - для того, чтобы правильно отразить отношения следования.
D3 - для однозначного определения операций Е и Н по конечным событиям.
Рассмотрим пример.
A) Укажите, какое влияние
оказывает добавление каждой
из следующих операций на
1) фиктивная операция (3,5) [Ответ. А предшествует I, J ]
2) фиктивная операция (3,4) [Ответ. А предшествует I, J ]
3) фиктивная операция (5,6) [Ответ. Е, Н предшествуют G ]
4) фиктивная операция (3,6) [Ответ. А предшествует G ]
б) Укажите, как можно ввести каждое
из следующих отношений
1) Операции А и В предшествуют G [Ввести фиктивную операцию (3,6) ]
2) Операция D предшествует G [Ввести
фиктивную операцию между
3) Операция C предшествует D. [Ввести
фиктивную операцию между
Задачи.
1. Постройте сетевую модель, включающую операции А, В, С, ... , P и удовлетворяющую указанным ниже отношениям упорядочения.
1) А, В, С - начальные операции,
которые можно начинать
2) операции D, E, F начинаются сразу по окончании операции А.
3) I, G начинаются после завершения как В, так и D.
4) Н начинается после окончания С, G.
5) К, L следуют за I.
6) J следует за E, H.
7) M, N следуют за F, но не могут начаться, пока не завершены Е, Н.
8) О следует за M и L.
9) Р следует за J, L, O.
10) Операции K, N, P - завершающие.
2. Фундамент здания можно
3. Программа опроса