Автор: Пользователь скрыл имя, 19 Ноября 2012 в 19:23, курсовая работа
Целью курсового проекта является изучить литературу по выбранной теме и научиться применять на практике симплекс – метод для решения прямой и двойственной задачи линейного программирования, а также решить двойственную задачу линейного программирования с помощью программы MS Excel.
Курсовой проект состоит из введения, двух глав и заключения.
В первой главе рассматриваются основные понятия и предложения теории двойственности ЗЛП, виды математических моделей двойственных задач и их экономическая интерпретация.
Во второй главе рассматривается решение двойственной задачи с помощью программы MS Excel.
Содержание:
Введение
Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.
Целью курсового проекта является изучить литературу по выбранной теме и научиться применять на практике симплекс – метод для решения прямой и двойственной задачи линейного программирования, а также решить двойственную задачу линейного программирования с помощью программы MS Excel.
Курсовой проект состоит из введения, двух глав и заключения.
В первой главе рассматриваются основные понятия и предложения теории двойственности ЗЛП, виды математических моделей двойственных задач и их экономическая интерпретация.
Во второй главе рассматривается решение двойственной задачи с помощью программы MS Excel.
1. Двойственность в линейном программировании
1.1 Прямые и двойственные
задачи линейного
С экономической точки зрения двойственную задачу можно интерпретировать так: какова должна быть цена единицы каждого из ресурсов, чтобы при заданных количествах ресурсов bi и величинах стоимости единицы продукции Cj минимизировать общую стоимость затрат? А исходную задачу определим следующим, образом: сколько и какой продукции xj(j =1,2,…, n) необходимо произвести, чтобы при заданных стоимостях Cj (j=1,2,…, n) единицы продукции и размерах имеющихся ресурсов bi(i=1,2,…, n) максимизировать выпуск продукции в стоимостном выражении. Большинство задач линейного программирования изначально определяются как исходные или двойственные задачи. Сделав вывод можно говорить о паре двойственных задач линейного программирования.
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, как мы уже знаем, в нахождении максимального значения функции:
F=c1x1+c2x2+…cnxn
при условиях
Сравнивая две сформулированные задачи,
видим, что двойственная задача составляется
согласно следующим правилам:
1. Целевая функция исходной
2. Матрица
составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица
в двойственной задаче получаются друг из друга транспонированием (т.е. заменой строк столбцами, а столбцов – строками).
3. Число переменных в двойственной задаче равно числу ограничений в системе исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче.
4. Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе исходной задачи, а правыми частями в соотношениях системы двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи.
5. Если переменная xj исходной задачи может принимать только лишь положительные значения, то j-е условие в системе двойственной задачи является неравенством вида «>». Если же переменная xj может принимать как положительные, так и отрицательные значения, то 1 – соотношение в системе представляет собой уравнение. Аналогичные связи имеют место между ограничениями исходной задачи и переменными двойственной задачи. Если i – соотношение в системе исходной задачи является неравенством, то i-я переменная двойственной задачи . В противном случае переменная уj может принимать как положительные, так и отрицательные значения.
Двойственные пары задач обычно подразделяют на симметричные и несимметричные. В симметричной паре двойственных задач ограничения прямой задачи и соотношения двойственной задачи являются неравенствами вида « «. Таким образом, переменные обеих задач могут принимать только лишь неотрицательные значения.
Двойственная задача
тесно связана задачей
Рассмотрим задачу использования ресурсов. У предприятия есть t видов ресурсов в количестве bi (i=1, 2,…, m) единиц, из которых выпускается n видов продукции. На изготовление 1 ед. i-й продукции тратится aij ед. t-гo ресурса, ее стоимость составляет Cj ед. Необходимо определить план выпуска продукции, обеспечивающий ее максимальный выпуск в стоимостном выражении. Примем за xj (j=1,2,…, n) количество ед. j-й продукций и составляет максимальное значение линейной функции
Z=C1x1+C2x2+ … +Cnxn
Определим ресурсы, которые потребуются для изготовления товара. Обозначим за единицу стоимости ресурсов единицу стоимости выпускаемого товара. А через уi (j=1,2,…, m) стоимость единицы i-го ресурса. Т.е. стоимость всех затраченных ресурсов, которые используются для изобретения единицы j-й продукции, составляет. Цена израсходованных ресурсов не должна превышать цены окончательного товара.
1.2 Основы теоремы двойственности
Пусть исходная ЗЛП имеет вид
(1)
(2)
(3)
причём ни одно из ограничений не имеет предпочтительной переменной. М-задача запишется так:
(4)
(5)
, , (6)
Задача (4)-(6) имеет предпочтительный план. Её начальный опорный план имеет вид
Если некоторые из уравнений (2) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.
Теорема: Если в оптимальном плане
(7)
М-задачи (4)-(6) все искусственные переменные , то план является оптимальным планом исходной задачи (1)-(3).
Для того чтобы решить задачу с ограничениями, не имеющими предпочтительного вида, вводят искусственный базис и решают расширенную М-задачу, которая имеет начальный опорный план
Решение исходной задачи
симплексным методом путем
Если в результате применения симплексного метода к расширенной задаче получен оптимальный план, в котором все искусственные переменные , то его первые n компоненты дают оптимальный план исходной задачи.
Теорема: Если в оптимальном плане М-задачи хотя бы одна из искусственных переменных отлична от нуля, то исходная задача не имеет допустимых планов, т. е. ее условия несовместны.
Теорема: Пусть исходная задача решается на максимум. Если для некоторого опорного плана все оценки неотрицательны, то такой план оптимален.
Теорема: Если исходная задача решается на минимум и для некоторого опорного плана все оценки неположительны, то такой план оптимален.
Теорема: Для любых допустимых планов и прямой и двойственной ЗЛП справедливо неравенство , т.е.
(7) – основное неравенство теории двойственности.
Теорема: (критерий оптимальности Канторовича)
Если для некоторых допустимых планов и пары двойственных задач выполняется неравенство , то и являются оптимальными планами соответствующих задач.
Теорема: (малая теорема двойственности)
Для существования оптимального плана любой из пары двойственных задач необходимо и достаточно существование допустимого плана для каждой из них.
Теорема:
Если одна из двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем экстремальные значения целевых функций равны: . Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.
Экономическое содержание первой теоремы двойственности состоит в следующем: если задача определения оптимального плана, максимизирующего выпуск продукции, разрешима, то разрешима и задача определения оценок ресурсов. Причем цена продукции, полученной при реализации оптимального плана, совпадает с суммарной оценкой ресурсов. Совпадение значений целевых функций для соответствующих планов пары двойственных задач достаточно для того, чтобы эти планы были оптимальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными тогда и только тогда, когда цена произведенной продукции и суммарная оценка ресурсов совпадают. Оценки выступают как инструмент балансирования затрат и результатов. Двойственные оценки, обладают тем свойством, что они гарантируют рентабельность оптимального плана, т. е. равенство общей оценки продукции и ресурсов, и обусловливают убыточность всякого другого плана, отличного от оптимального. Двойственные оценки позволяют сопоставить и сбалансировать затраты и результаты системы.
Теорема: (о дополняющей нежесткости )
Для того, чтобы планы и пары двойственных задач были оптимальны, необходимо и достаточно выполнение условий:
(1)
(2)
Условия (1), (2) называются условиями дополняющей нежесткости. Из них следует: если какое-либо ограничение одной из задач ее оптимальным планом обращается в строгое неравенство, то соответствующая компонента оптимального плана двойственной задачи должна равняться нулю; если же какая-либо компонента оптимального плана одной из задач положительна, то соответствующее ограничение в двойственной задаче ее оптимальным планом должно обращаться в строгое равенство.
Экономически это означает, что если по некоторому оптимальному плану производства расход i -го ресурса строго меньше его запаса , то в оптимальном плане соответствующая двойственная оценка единицы этого ресурса равна нулю. Если же в некотором оптимальном плане оценок его i -я компонента строго больше нуля, то в оптимальном плане производства расход соответствующего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс (полностью используемый по оптимальному плану производства) имеет положительную оценку, а ресурс избыточный (используемый не полностью) имеет нулевую оценку.
Теорема: (об оценках). Двойственные оценки показывают приращение функции цели, вызванное малым изменением свободного члена соответствующего ограничения задачи математического программирования, точнее
(3)
Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов , составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс–метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции
(54)
при условиях
(55)
(56)
где
и среди чисел имеются отрицательные.
В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) – (56), так как среди его компонент имеются отрицательные числа.
Поскольку векторы – единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа Таким образом, можно найти
Определение:
Решение системы линейных уравнений (55), определяемое базисом , называется псевдопланом задачи (54) – (56), если для любого
Теорема:
Если в псевдоплане , определяемом базисом , есть хотя бы одно отрицательное число такое, что все , то задача (54) – (56) вообще не имеет планов.
Теорема:
Если в псевдоплане , определяемом базисом , имеются отрицательные числа такие, что для любого из них существуют числа aij<0, то можно перейти к новому псевдоплану, при котором значение целевой функции задачи (54) – (56) не уменьшится.
Сформулированные теоремы дают основание для построения алгоритма двойственного симплекс-метода.
Итак, продолжим рассмотрение задачи (54) – (56). Пусть – псевдоплан этой задачи. На основе исходных данных составляют симплекс-таблицу (табл. 15), в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54) – (56), поскольку, по предположению, все . Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс–таблицы к другой до тех пор, пока из столбца вектора не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)–й строки, т.е. для любого
Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут одно из них: пусть это число bl. Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор Pl. Чтобы определить, какой вектор следует ввести в базис, находим , где
Пусть это минимальное значение принимается при , тогда в базис вводят вектор Рr. Число является разрешающим элементов. Переход к новой симплекс–таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i–й строке симплекс–таблицы (табл. 15) в столбце вектора Р0 стоит отрицательное число bi, а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.
Информация о работе Двойственность в линейном программировании