Автор: Пользователь скрыл имя, 27 Марта 2012 в 11:07, контрольная работа
Изучение спроса населения является одним из ключевых элементов маркетинговых программ предприятий.
Основным маркетинговым параметром, управление которым обеспечивает достижение маркетинговых целей предприятия является именно спрос. Он незримо пpиcутствуeт во всех функциях управления и на его повышение направлена маркетинговая деятельность фирм. Цели фирмы, их значение также определяются спросом.
Цель контрольной работы состоит в том, чтобы рассмотреть прогнозную оценку спроса на рынке товаров (услуг).
Существуют различные приемы и методы прогнозирования. Чаще других в прогнозировании спроса и предложения применяются следующие:
аналоговые модели, когда в качестве прогноза рассматриваются благоприятные показатели рыночной ситуации в каком-либо регионе или стране;
имитационные модели, когда вместо реальных данных используются построения, созданные по специальной программе с помощью ЭВМ;
нормативные, или рационализированные, прогнозные расчеты, например, проистекающие из рационального бюджета или рациональных рекомендуемых норм потребления (примечание: этот метод больше подходит для рынка средств производства, где большую роль играют производственно-технические нормативы и прочие детерминанты, чем для потребительского рынка, где потребности проявляются в форме статистических закономерностей);
прогнозирование по экспертным оценкам (обычно Дельфи – метод);
методы экстраполяции: техническое, механические способы сглаживания динамических рядов, трендовые модели:
методы статистического моделирования (парные и многофакторные уравнения регрессии);
прогнозирование по коэффициентам эластичности.
В практике статистического исследования и прогнозирования покупательского спроса по различным видам продуктов и услуг используются различные типы моделей, наиболее соответствующие характеру и закономерностям развития данного рынка.
1.3. Основные методы прогнозирования спроса
Прогнозирование спроса может осуществляться различными
методами, в частности можно выделить три основные группы:
методы экономико-математического моделирования;
нормативные методы;
методы экспертных оценок.
Можно выделить два метода разработки прогнозов, основанных на методах экономико-математического моделирования: экстраполяцию и моделирование.
В первом случае в качестве базы прогнозирования используется прошлый опыт, который пролонгируется на будущее. Делается предположение, что система развивается эволюционно в достаточно стабильных условиях. Чем крупнее система, тем более вероятно сохранение ее параметров без изменения, конечно, на срок не слишком большой. Обычно рекомендуется, чтобы срок прогноза не превышал одной трети длительности исходной временной базы.
Во втором случае строится прогнозная модель, характеризующая зависимость изучаемого параметра от ряда факторов, на него влияющих. Она связывает условия, которые, как ожидается, будут иметь место и характер их влияния на изучаемый параметр.
Данные модели не используют функциональные зависимости; они основаны только на статистических взаимосвязях.
При построении прогнозных моделей чаще всего используется парный и множественный регрессионный анализ; в основе экстраполяционных методов лежит анализ временных рядов.
Парный регрессионный анализ основан на использовании уравнения прямой линии:
y = a +bx,
где y – оцениваемая или прогнозируемая зависимая переменная (результативный признак);
a – свободный член уравнения;
x – независимая переменная (факторный признак), используемая для
определения зависимой переменной.
b – коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения – вариация y, приходящаяся на единицу вариации x.
Коэффициенты a и b рассчитываются на основе наблюдений величин y и x с помощью метода наименьших квадратов.
Предположим, что торговый агент продает детские игрушки, посещая квартиры случайным образом. Отсутствие посещения какой-то квартиры означает отсутствие продажи или a = 0. Если в среднем каждый десятый визит сопровождается продажей на 62 доллара, то стоимость продажи на один визит составит 6,2 доллара или b = 6,2.
Тогда y = 0 + 6,2x.
Таким образом, можно ожидать, что при 100 визитах доход составит 620 долларов. Надо помнить, что эта оценка не является обязательной, а носит вероятностный характер.
Экономико-математические методы основаны на использовании корреляционного и регрессионного анализа, позволяющего устанавливать тесноту связи и вид зависимости среднего значения какой-либо величины от некоторой другой или от нескольких величин. В нашем случае - это установление зависимости развития спроса от влияния наиболее главных факторов. в практике прогнозирования товарно-групповой структуры спроса чаще всего применяются трендовые и регрессионные модели:
Трендовые модели прогнозирования спроса представляют собой уравнения, формализующие устойчивые процессы его развития. Они применяются для прогнозирования наиболее стабильных закономерностей по крупным товарным подотраслям (например, соотношение спроса на продовольственные и непродовольственные товары). Основной параметр трендовых моделей - время, то есть по существу речь также идет об экстраполяции на прогнозируемый период тенденций и закономерностей базисного периода.
Регрессионные (факторные) модели отражают количественную связь одного показателя с другим или с группой других (множественная регрессия). В качестве переменных выступают факторы, определяющие динамику спроса. Математическую основу построения моделей составляют важнейшие положения теории вероятности, математической статистики и высшей математики. Процесс построения подобных моделей состоит из нескольких последовательных этапов.
Первым и важнейшим этапом моделирования развития товарно-групповой структуры спроса населения является отбор факторов. Они должны отражать объективные процессы изучаемого явления, быть количественно измеримыми и независимыми друг от друга.
На втором этапе рассчитывается сила влияния или теснота связи между факторами и спросом в базисном периоде. Она определяется с помощью коэффициентов корреляции и критериев согласия.
На третьем этапе выявляется математическая форма связи или вид зависимости спроса от факторов, подбираются функции, наиболее точно описывается процесс развития спроса.
Четвертый этап: расчет параметров уравнения. Параметры уравнений выражают степень и направление воздействия каждого фактора на спрос и рассчитываются методом наименьших квадратов.
Пятый этап: оценка прогностической ценности модели на основе ретроспективных расчетов.
Экономико-математические методы эффективно используется при краткосрочном прогнозировании. Так как объективная реальность нашей экономики состоит в том, что довольно трудно выявить и определить количественно более менее стабильные факторы, влияющие на прогнозируемый процесс. Поэтому составление среднесрочных и, тем более, долгосрочных прогнозов представляется довольно затруднительным в современных условиях. И как правило, преобладает прогнозирование на краткосрочные периоды. Экономико-математическое моделирование является основой экономической прогностики. Оно позволяет на строго количественной основе выявить характер связей между отдельными элементами рынка и теми факторами, которые влияют на его развитие. Что особенно важно - математические модели дают возможность наблюдать, как станут развиваться события при тех или иных начальных допущениях.
Многофакторное уравнение множественной регрессии имеет следующий вид:
y = a +b1 x 1 + b2x2 + b3 x3 +.... +bm xm,
где y – зависимая или прогнозируемая переменная;
xi – независимая переменная;
a – свободный член уравнения;
bi – коэффициент условно-чистой регрессии;
i = 1, m;
m – число независимых переменных (факторных признаков).
Термин «коэффициент условно-чистой регрессии» означает, что каждая из величин b измеряет среднее по совокупности отклонение зависимой переменной (результативного признака) от ее средней величины при отклонении зависимой переменной (фактора) x от своей средней величины на единицу ее измерения и при условии, что все прочие факторы, входящие в уравнение регрессии, закреплены на средних значениях, не изменяются, не варьируются.
Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится «внешняя среда» протекающего процесса, прежнее уравнение регрессии результативного признака на факторный потеряет свое значение.
Следует соблюдать еще одно ограничение: нельзя подставлять значения факторного признака, значительно отличающиеся от входящих в базисную информацию, по которой вычислено уравнение регрессии. При качественно иных уровнях фактора, если они даже возможны в принципе, были бы иными параметры уравнения. Можно рекомендовать при определении значений факторов не выходить за пределы трети размаха вариации как за минимальное, так и за максимальное значение признака-фактора, имеющееся в исходной информации.
Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения фактора, называют точечным прогнозом. Вероятность точной реализации такого прогноза крайне мала. Необходимо сопроводить его значение средней ошибкой прогноза или доверительным интервалом прогноза, в который с достаточно большой вероятностью попадают прогнозные оценки. Средняя ошибка является мерой точности прогноза на основе уравнения регрессии. Существуют усовершенствованные методы парной регрессии, в какой-то степени преодолевающие его недостатки.
На основе выявленных тенденций спрос на краткосрочный период целесообразно определять с помощью методов экстраполяции: метода подбора функции, экспоненциального сглаживания с регулируемым трендом и др.
В случае устойчивой тенденции изменения спроса прогнозные расчеты можно производить путем выравнивания динамических рядов и подбора функции (у = at + b — линейная, у = at2 + bt + с — параболическая и др.).
При изменяющихся условиях целесообразно применять метод экспоненциального сглаживания с регулируемым трендом. Развитие спроса подвержено сезонным колебаниям, которые необходимо учитывать при краткосрочных прогнозах на квартал, месяц. Учет влияния сезонных колебаний продаж (спроса) целесообразно проводить с помощью расчетных индексов сезонности.
На практике для изучения спроса широко используются наблюдения, опросы покупателей о покупательских намерениях (анкетные опросы, интервьюирование), ярмарки, выставки, книги предложений, тестирование, реклама.
На макроуровне наиболее широкое распространение для прогнозирования спроса получил нормативный метод, предполагающий использование норм потребления продуктов (товаров) на душу населения. При этом в зависимости от прогнозного периода необходимо применять следующие подходы.
При определении спроса на длительную перспективу целесообразно использовать рекомендуемые (рациональные) нормы потребления. Например, рациональная норма потребления мяса и мясопродуктов на душу населения — 82 кг в год. На основе этой нормы и численности населения в стране (регионе) рассчитывается потребность в мясе и мясопродуктах на прогнозный период. Потребности выступают в качестве ориентира для развития производства и разработки мер с целью достижения рациональных норм потребления.
Краткосрочные прогнозы спроса следует строить с учетом корректировки норм потребления. Для этого фактическое потребление на душу населения анализируется по периодам и сопоставляется с рекомендуемыми нормами. Выявляются тенденции потребления продукции, темпы падения или увеличения спроса, причины его изменения.
Затем с учетом влияния факторов, прежде всего изменения доходов населения и потребительских цен, определяется реальное потребление на душу населения в прогнозном периоде.
Нормативный метод основан на использовании показателей рекомендуемого уровня потребления материальных благ и применяется как основной инструмент среднесрочного и долгосрочного прогнозирования товарно-групповой структуры спроса в целом по стране. С помощью данного метода рассчитывают либо сроки достижения норм рационального потребления (исходя из фактически сложившихся среднегодовых темпов потребления этих товаров в базисном периоде), либо темпы роста производства и потребления, необходимых для достижения к намеченному сроку нормативных показателей рационального потребления. Обычно расчеты проводятся параллельно. Первый имеет большое значение для среднесрочных, а второй для долгосрочных прогнозов, являясь целевой установкой.
Сложность заключается в разработке самих нормативных показателей. Рекомендуемые нормы потребления продуктов питания основаны на физиологических потребностях организма в белках, жирах, углеводах, витаминах.
Рекомендуемые уровни потребления непродовольственных товаров могут разрабатываться, например, на основе опросов представительных групп потребителей.
Прогнозы спроса по важнейшим товарам разрабатываются для анализа и прогнозирования состояния товарных рынков и выработки рекомендаций о мерах государственного воздействия на эти рынки, а также обеспечения заинтересованных организаций информацией о динамике спроса.
В рыночной экономике спрос на товары народного потребления формируется под влиянием ряда факторов, поэтому для осуществления прогнозных расчетов рекомендуется использовать многофакторные модели — линейные или нелинейные:
Информация о работе Прогнозная оценка спроса на рынке товаров