Автор: Андрей Левашов, 06 Декабря 2010 в 08:47, курсовая работа
Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслуживающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время бездействия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь определенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с простоем обслуживающих устройств.
Введение..................................................................................................
1.Классификация СМО и их основные элементы ...............................
2.Обслуживание с ожиданием..............................................................
3.Пример использования СМО с ожиданием......................................
Расчеты...................................................................................................
Выводы...................................................................................................
Список литературы................................................................................
(4)
Подобные же рассуждения для приводят к уравнению
(5)
Для определения вероятностей получили бесконечную систему дифференциальных уравнений (2)-(5). Её решение представляет несомненные технические трудности.
В теории массового обслуживания обычно изучают лишь установившееся решение для . Существование таких решений устанавливается так называемыми эргодическими теоремами, некоторые из них позднее будут установлены. В рассматриваемой задаче оказывается, что предельные или, как говорят обычно, стационарные вероятности существуют. Введём для них обозначения . Заметим дополнительно, что при .
Сказанное позволяет заключить, что уравнения (3), (4), (5) для стационарных вероятностей принимают следующий вид:
(6)
при 1
(7)
при
(8)
К этим уравнениям добавляется нормирующее условие
(9)
Для решения полученной бесконечной алгебраической системы введём обозначения: при 1
при
Система уравнений (6)-(8) в этих обозначениях принимает такой вид:
Отсюда заключаем, что при всех
т.е. при 1
(10)
и при
(11)
Введём для удобства записи обозначение
Уравнение (10) позволяет заключить, что при 1
(12)
При из (11) находим, что
и, следовательно, при
(13)
Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате
так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что
(14)
то при
этом предположении находим
(15)
Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратной скобке уравнения для определения , расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .
Методы теории цепей Маркова позволяют заключить, что при с течением времени очередь стремится к по вероятности.
Поясним полученный результат на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требований на обслуживание, приводят к серьезным просчетам.
Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В результате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведенном подсчете принимается равным 1. Те же заключения относятся и к расчету числа коек в больницах, числа работающих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибку и при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.
Во всем дальнейшем мы предполагаем, что условие (14) выполнено.
Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой . Рассмотрим сейчас только задачу определения распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через вероятность того, что длительность ожидания превзойдёт t, и через вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство
(16)
Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для . Несложные преобразования приводят к таким равенствам: при m=1
=1- , (17)
а при m=2
(18)
Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна
(19)
Эта формула для m=1 принимает особенно простой вид:
(20)
при m=2
(21)
В формуле (19) может принимать любое значение от 0 до m (исключительно). Так что в формуле (20) < 1, а в (21) <2.
Если в момент поступления требования в очереди уже находились k-m требований, то, поскольку обслуживание происходит в порядке очередности, вновь поступившее требование должно ожидать, когда будут обслужены k-m+1 требований. Пусть означает вероятность того, что за промежуток времени длительности t после поступления интересующего требования закончилось обслуживание ровно s требований. Ясно, что при имеет место равенство
Так как распределение длительности обслуживания предположено показательным и не зависящим ни от того, сколько требований находится в очереди, ни от того, как велики длительности обслуживания других требований, то вероятность за время t не завершить ни одного обслуживания (т.е. вероятность того, что не освободится ни один из приборов) равна
Если все приборы заняты обслуживанием и ещё имеется достаточная очередь требований, которые ожидают обслуживания, то поток обслуженных требований будет простейшим. Действительно, в этом случае все три условия — стационарность, отсутствие последействия и ординарность — выполнены. Вероятность освобождения за промежуток времени t ровно s приборов равна (это можно показать и простым подсчетом)
Итак,
и, следовательно,
Но вероятности известны:
поэтому
Очевидными преобразованиями приводим правую часть последнего равенства к виду
=
.
Из формул (18) и (19) следует, что поэтому при m 0
(22)
Само собой разумеется, что при t 0
Функция имеет в точке t=1 разрыв непрерывности, равный вероятности застать все приборы занятыми.
Формула (22) позволяет находить все интересующие числовые характеристики длительности ожидания. В частности, математическое ожидание длительности ожидания начала обслуживания или, как предпочитают говорить, средняя длительность ожидания равна
Несложные вычисления приводят к формуле
(23)
Дисперсия величины равна
Формула (23) даёт среднюю длительность ожидания одного требования. Найдем среднюю потерю времени требованиями, пришедшими в систему обслуживания в течение промежутка времени T. За время T в систему поступает требований и среднем; общая потеря ими времени па ожидание в среднем равна
(24)
Приведем небольшие арифметические подсчеты, которые продемонстрируют нам, как быстро возрастают суммарные потери времени па ожидание с изменением величины . При этом мы ограничиваемся случаем Т=1 и рассматриваем лишь самые малые значения т: т=1 и т=2.
При т=1 в силу (20)
При р=0,1; 0,3; 0,5; 0,9 значение а приблизительно равно 0,011; 0,267; 0,500; 1,633; 8,100.
При m=2 в силу (24)
При =0,1; 1,0; 1,5; 1,9 значение а приблизительно равно 00003; 0,333; 1,350; 17,537.
Приведённые
данные иллюстрируют хорошо известный
факт относительно большой чувствительности
систем обслуживания, уже достаточно
сильно загруженных, к возрастанию загрузки.
Потребитель при этом сразу ощущает значительное
возрастание длительности ожидания. Этот
факт обязательно следует учитывать при
расчёте загрузки оборудования в системах
массового обслуживания.
Раздел
ІІІ. Пример использования
СМО с ожиданием
В городе имеется транспортное агентство для обслуживания населения. Число заявок на обслуживание случайно и представлено выборкой 1.
Время
перевозок (включая время
Определить :
Информация о работе Классификация систем массового обслуживания и их основные элементы