Цели и система управления предприятием

Автор: Пользователь скрыл имя, 27 Февраля 2012 в 18:27, контрольная работа

Описание работы

Основные цели менеджмента - прогнозирование, планирование и достижение намеченных результатов бизнеса. Задачей менеджеров является обеспечение прибыльности деятельности фирмы посредством рациональной организации производственного процесса, включая управление производством и развитие технологической базы, а также эффективное использование кадрового потенциала при одновременном повышении квалификации и творческой активности каждого работника.

Содержание

ВВЕДЕНИЕ 3
1 Основные понятия организации 5
2. Организация как сложная система 8
3. Управление сложной системой 16
ЗАКЛЮЧЕНИЕ 34
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 36

Работа содержит 1 файл

ЦЕЛИ И СИСТЕМА УПРАВЛЕНИЯ ПРЕДПРИЯТИЯМИ.doc

— 161.50 Кб (Скачать)

Эти правила называют алгоритмами или законами управления. Алгоритмом – если управляющие воздействия вырабатываются с помощью многошагового процесса, законом – если одноэтапно.

Закон обычно выражается формулой или таблицей. Формула может включать как алгебраические и интегрально-дифференциальные зависимости, так и логику.

Любой закон может быть представлен алгоритмом, и поскольку любую формулу можно представить в виде последовательности более простых операций. Однако не всякому алгоритму можно противопоставить закон. Существуют методы выработки решений (управляющих воздействий), которые, по существу, в силу различных причин носят характер последовательности отдельных этапов: методы линейного и динамического программирования, метод ветвей и границ и т. п.

Для выработки управляющих воздействий в общем случае используется информация о текущих значениях:

– управляемых переменных;

– задающих воздействий – переменных, определяющих желаемое поведение объекта управления;

– возмущающих воздействий. Задающие воздействия вырабатываются, как правило, вне системы управления, на верхнем уровне. В тех случаях, когда эта информация заранее записывается в памяти и используется для управления в нужный момент, в состав системы управления включают задающее устройство (в программно-логическом управлении – программатор).

Подобную схему можно найти сегодня в начале большинства книг по управлению самыми различными системами, как социально-экономическими (предприятие, цех, участок), так и техническими (станок, робот, транспортное средство). Основа схемы – два прямоугольника. Один из них – то, чем нужно управлять. Это может быть завод, цех, участок производства, технологический агрегат. Другой прямоугольник – то, что должно управлять объектом, – элемент управления. На заводе – это администрация предприятия, использующая автоматизированную систему управления (АСУ), на участке – АСУ технологическим процессом, применительно к технологическому агрегату – рабочий или автоматическое устройство управления агрегатом. Прямоугольники – элемент и объект управления – связаны двумя линиями – прямой и обратной связью. По линиям циркулирует информация: по одной – туда, по другой – обратно. Туда, на объект управления, идет от элемента управления командная информация: что, когда и как нужно сделать. Обратно, в элемент управления, поступает с объекта информация о его состоянии – доклад о том, что, когда и как сделано, в каком положении находятся элементы станка, робота и т. п. Это сведения о выполнении заданий, наличии материалов, инструмента, работе станков и т. п. В элементе управления информация состояния перерабатывается в командную информацию. На основе этой переработки рождаются указания о дальнейшей работе объекта, команды на перемещение и т. п.

Итак, первое: управление – это воздействие органов или устройств управления на объекты управления.

Второе: воздействие на объект управления осуществляется в соответствии с принятыми органами управления решениями.

Третье: целенаправленная переработка информации, составляющая основу управления, это интеллектуальная, умственная задача. Сегодня она все чаще и во все большем объеме поручается электронным вычислительным машинам.

В связи с тем, что изменения некоторых переменных в системе управления по различным причинам могут иметь кратковременный характер, а информация об этих изменениях влияет на выбор управляющих переменных, элемент управления должен включать в себя еще и память – устройство для фиксации событий, имевших место в предшествующие моменты времени.

Система управления – понятие не материальное. Это совокупность математических моделей реального объекта управления и модели элемента управления – алгоритма или закона управления. Основная задача этого понятия – формальная или формализованная разработка закона или алгоритма управления по известной модели объекта.

Реальная система управления производственным комплексом представляет собой совокупность контуров управления, расположенных на различных уровнях управления, связанных между собой как по вертикали, когда система нижнего уровня представляет собой объект управления для системы верхнего уровня, так и по горизонтали, если для управления переменными одного объекта необходима информация о состоянии одной или нескольких переменных другого.

Для управления реальной производственной системой (участком, цехом, заводом) необходимо управлять очень большим количеством переменных, как производственных, так и технологических. Управление каждой из них не обязательно требует информации о всех остальных. Как правило, для каждой из переменных нужно учитывать не более пяти-шести переменных. Действительно, любой технологический комплекс состоит из относительно обособленных технологических и вспомогательных агрегатов, как правило связанных друг с другом через одну, редко две переменные. Кроме того, задачи управления на различных уровнях управления характеризуются различными по своему характеру и сущности объектами управления. На нижних уровнях переменные представляют собой, как правило, параметры технологического оборудования: положение, скорость движения, температура, давление и т. п., на верхних – параметры материальных потоков: обрабатываемых материалов, инструмента, оснастки, готовых продуктов и т. п.

Все системы различаются между собой как по типу объекта, так и по способу управления.

Если математическая модель объекта управления отражает связь между установившимися значениями переменных, т. е. инерционными характеристиками объекта можно пренебречь, то такой объект называют статическим и систему управления соответственно статической. Например, задачи распределения обработки по технологическим агрегатам.

Если же инерционными характеристиками объекта пренебречь нельзя и модель включает время, то объект управления и систему управления называют динамическими. К динамическим системам относят широко известные системы регулирования параметров технологических агрегатов.

Если объект и внешние воздействия (возмущающие и задающие) могут быть описаны детерминированными математическими зависимостями, то такие системы называют детерминированными, в противном случае – стохастическими, или вероятностными.

Переменные модели объекта могут иметь непрерывный характер или дискретный. Непрерывность или дискретность переменных определяется как физическими свойствами объекта, когда объект имеет ограниченное число устойчивых состояний, а параметры переходов из одного устойчивого состояния в другое не интересуют, так и целями управления. Если для цели управления достаточно знать, что переменные объекта находятся в определенных пределах, то используются модели с дискретными переменными.

Непрерывные системы – системы с непрерывными переменными описываются алгебраическими и дифференциальными зависимостями. К ним относятся системы автоматического регулирования.

Дискретные системы описываются средствами дискретной математики – множествами, отношениями, графами, матрицами, формулами алгебры, логики.

По принципам управления системы делятся на работающие в реальном масштабе времени и работающие по предварительно разработанному плану, программе. Иногда говорят, что последние работают в «отсроченном режиме».

Отличить первые от вторых можно по следующему признаку. Как известно, для управления необходимо выполнить три группы операций: собрать информацию, выработать на ее основе управляющие воздействия (решения) и, наконец, реализовать, применить эти управляющие воздействия к объекту. Если эти три группы можно во времени разделить, то мы имеем дело с управлением по предварительно разработанной программе или плану. Это понятие несколько шире, чем общепринятое понятие «планирование». Под него подпадают и такие программы, как последовательность опорных точек при обработке на станках с числовым программным управлением (ЧПУ), и так называемые шаблоны плавок, и программы тепловой обработки, т. е. все случаи, когда управляющие воздействия можно заранее определить и распределить по порядку или во времени.

Процесс управления носит периодический характер, разделен на этапы планирования. Очевидно, что разработка плана или программы возможна, если достаточно достоверно известны или хорошо прогнозируются результаты предыдущего этапа планирования, задающие и возмущающие воздействия.

Характерная черта планирования – пошаговое управление, причем принятие решения на каждом последующем шаге производится с учетом результатов управления на предыдущем шаге. Вторая особенность планирования – сравнительно сложные многошаговые методы выработки управляющих решений, как правило связанные с конструированием и оценкой вариантов или проигрыванием их на модели.

Системы планирования широко распространены не только на верхних уровнях управления производством, но и в процессах управления технологическим оборудованием. Если же все три группы операций: сбор информации, выработка решений и их реализация – неразделимы во времени, то такое управление относят к управлению в реальном времени.

Процесс в таких системах практически непрерывный: сбор информации, выработка решения и его реализация выполняются слитно и непрерывно. Такое управление применяется для управления и инерционными, динамическими объектами. Реакция на непосредственно предшествующие команды или решения на момент выработки последующих еще не известна, прогноза об изменении возмущающих и задающих воздействий, как правило, нет: используется информация о текущих значениях управляемых переменных, задающих и возмущающих воздействиях. В некоторых случаях при наличии в управляющем устройстве памяти используется информация о предшествующих значениях этих переменных и воздействий.

Если процессы быстротекущие, времени на проигрывание вариантов нет.

Единственный выход – на каждую ситуацию управления заранее подготовить соответствующий набор управляющих воздействий. Это задача сложная, поскольку ситуаций может быть очень много. Облегчается она тем, что в большинстве случаев между ситуациями и целесообразными, т. е. ведущими к цели управления, управляющими воздействиями существует функциональная зависимость – закон управления. Эта зависимость устанавливается на основе следующего подхода: контур управления в целом рассматривается как динамическая система, поведение которой определяется как характеристиками объекта, так и характеристикой устройства управления – законом управления.

Выбором соответствующего закона управления можно добиться желаемого  поведения системы. Например, в системах непрерывного управления (регулирования) выбором закона управления обеспечиваются устойчивость и качество переходного процесса. Более сложным законом управления можно обеспечить максимальное быстродействие и т. д. Для дискретных систем закон управления выражается в форме логических соотношений. Выбором логической функции можно добиться реализации циклического процесса (цикловое управление). Значение этой функции (управляющее воздействие) может определиться сразу, практически одномоментно (так называемая аппаратурная реализация), а может в результате последовательного алгоритмического процесса. Это зависит от сложности функции и имеющихся технических средств.

Необходимо отметить, что четкой границы или признака, отличающего оба типа управления, не существует. Различие заключается в отношении между быстродействием элемента управления и скоростью протекания процесса в объекте управления.

В чистом виде эти два типа управления встречаются редко. Как правило, реальные системы управления используют оба принципа. В системах планирования производства предусматривают механизмы корректировки планов, или «регулирование» производства. В системах регулирования и программно- логического управления, когда возможно, используют заранее запрограммированные режимы. И наконец, в особый класс выделают так называемые оптимальные системы управления. Дело в том, что задача управления, как правило, допускает не одно решение: имеется несколько способов достижения цели управления. Каждому способу соответствуют свои затраты (энергии, времени и т. д.) или характеристики (точность, надежность). Опенка этих показателей называется критерием качества управления. Управление, обеспечивающее наряду с достижением цели минимальные (или максимальные) значения критерия качества, называется оптимальным управлением.

Оптимизация управления достигается в основном двумя способами.

Первый способ – планирования или программирования – используется в тех случаях, когда, во-первых, параметры модели объекта управления достоверно известны и не меняются в процессе управления; во-вторых, характер возмущающих и задающих воздействий достоверно известен и не меняется в процессе управления. Тогда существует принципиальная возможность априорного расчета управляющих воздействий, обеспечивающих оптимальный процесс.

К оптимальному типу управления относится управление, использующее алгоритмы линейного, нелинейного и динамического программирования, принцип максимума.

Второй способ применяется тогда, когда параметры модели достоверно неизвестны или меняются во времени либо неизвестен характер возмущающих или задающих воздействий и пренебречь ими нельзя. Оптимизация обеспечивается в процессе реализации управляемого процесса, в реальном времени. Такой принцип называют принципом адаптации, а системы управления соответственно – адаптивными.


ЗАКЛЮЧЕНИЕ

Под системным подходом в управлении понимают систематизированный способ мышления, в соответствии с которым процесс обоснования решения базируется на определении общей цели системы и последовательном подчинении ей деятельности множества подсистем, планов их развития, а также показателей и стандартов работы. В общем смысле системный подход рассматривается как упорядоченная и воспроизводимая процедура выработки решений, применяемая к аналитическим проблемам любого рода и масштаба.

Информация о работе Цели и система управления предприятием