Автор: Пользователь скрыл имя, 18 Декабря 2012 в 21:46, доклад
Транспортная задача (transportation problem) - одна из наиболее распространенных задач математического программирования (обычно - линейного). В общем виде ее можно представить так: требуется найти такой план доставки грузов от поставщиков к потребителям, чтобы стоимость перевозки (или суммарная дальность, или объем транспортной работы в тонно-километрах) была наименьшей. Следовательно, дело сводится к наиболее рациональному прикреплению производителей к потребителям и наоборот.
• Введение
• 1. Формулировка транспортной задачи
• 2. Математическая модель транспортной задачи
• 3. Необходимое и достаточное условия разрешимости транспортной задачи
• 4. Свойство системы ограничений транспортной задачи
• 5. Опорное решение транспортной задачи
• 6. Методы построения начального опорного решения
• 6.1 Построение первоначального плана по способу северо-западного угла
• 6.2 Построение первоначального плана по способу минимального элемента
• 7. Переход от одного опорного решения к другому
• 8. Распределительный метод
• 9. Метод потенциалов
• 10. Особенности решения транспортных задач с неправильным балансом
• 11. Алгоритм решения транспортной задачи методом потенциалов
• 11.1 Предварительный шаг
• 11.2 Общий повторяющийся шаг
• 12. Транспортная задача с ограничениями на пропускную способность
• 13. Транспортная задача по критерию времени
• 14. Применение транспортной задачи для решения экономических задач
• Заключение
• Список использованной литературы
План реферата
Введение
Методы линейного
Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.
С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.
Все экономические задачи,
решаемые с применением линейного
программирования, отличаются альтернативностью
решения и определенными
Весьма типичной задачей, решаемой с помощью линейного программирования, является транспортная задача. [1]
Транспортная задача (transportation problem) - одна из наиболее распространенных задач математического программирования (обычно - линейного). В общем виде ее можно представить так: требуется найти такой план доставки грузов от поставщиков к потребителям, чтобы стоимость перевозки (или суммарная дальность, или объем транспортной работы в тонно-километрах) была наименьшей. Следовательно, дело сводится к наиболее рациональному прикреплению производителей к потребителям и наоборот. [2]
1. Формулировка транспортной задачи
В простейшем виде, когда
распределяется один вид продукта и
потребителям все равно, от кого из
поставщиков его получать, задача
формулируется следующим
Исходная информация:
Mi - количество единиц груза в i-м пункте отправления (i = 1, 2, …, k);
Nj - потребность в j-м пункте назначения (j = 1, 2, …, l) (в единицах груза);
aij - стоимость перевозки единицы груза из i-гo пункта в j-й.
Обозначим через xij планируемое количество единиц груза для перевозки из i-ro пункта в j-й.
В принятых обозначениях:
- общая (суммарная) стоимость перевозок;
- количество груза, вывозимого из i-ro пункта;
- количество груза,
В простейшем случае должны
выполняться следующие
Таким образом, математической формулировкой транспортной задачи будет:
найти
при условиях
;
;
Эта задача носит название замкнутой (закрытой, сбалансированной) транспортной модели.
Заметим, что условие является естественным условием разрешимости замкнутой транспортной задачи.
Более общей транспортной задачей является так называемая открытая (несбалансированная) транспортная модель:
найти
при условиях
Ясно, что в этой задаче не предполагается, что весь груз, накопленный в i-м пункте, должен быть вывезен. [3]
2. Математическая модель транспортной задачи
Простейшими транспортными задачами являются задачи о перевозках некоторого однородного груза из пунктов отправления (от поставщиков) в пункты назначения (к потребителям) при обеспечении минимальных затрат на перевозки.
Обычно начальные условия таких задач записывают в таблицу. Например, для k поставщиков и lпотребителей такая задача имеет следующий вид:
Здесь показатели aij означают затраты на перевозку единицы груза от i-го поставщика (i=1,2,…,k) к j-тому потребителю (j=1,2,…,l), Mi - мощность i-того поставщика в планируемый период, Nj - спрос j-того потребителя на этот же период. Обозначим через xij поставку (количество груза), которая планируется к перевозке от i-того поставщика к j-тому потребителю. Математически задача сводится к нахождению минимума целевой функции, выражающей суммарные затраты на перевозку груза, т.е. функции
при ограничениях
(1)
Если к этим ограничениям добавить еще одно:
,(2)
т.е. суммарная мощность поставщиков равна суммарному спросу потребителей, то соответствующая модель задачи называется закрытой.
Задачам, в которых ограничение (2) отсутствует, т.е.
,
первоначально соответствует открытая модель.
Отметим некоторые особенности экономико-математической модели транспортной задачи.
Система ограничений (1) сразу имеет вид уравнений, поэтому отпадает необходимость вводить добавочные переменные.
Матрица коэффициентов при переменных в системе (1) состоит только из единиц и нулей.
Система ограничений (1) включает k уравнений, связывающих поставки i-того поставщика с мощностью Mi (i=1,2,…,k) этого поставщика, и l уравнений, связывающих поставки j-тому потребителю со спросом Nj (j=1,2,…,l) этого потребителя. Заметим, что число k равно числу строк исходной таблицы, а число l - числу столбцов.
Число переменных xij, входящих в целевую функцию и в систему уравнений (1), равно произведению kl, т.е. числу клеток таблицы.
Таким образом, система ограничений (1) есть система из k+l уравнений с kl переменными.
Любое решение транспортной задачи (x11, x12,…, xkl) называется распределением поставок. Так как поставки не могут быть отрицательными, то речь идет только о допустимых решениях.
Оптимальному решению
транспортной задачи соответствует
оптимальное распределение
В ходе решения задачи и нужно получить это оптимальное распределение поставок, которому соответствует какое-то допустимое базисное решение системы ограничений (1). [4]
3. Необходимое
и достаточное условия
Ограничение (1) и условия неотрицательности переменных, исключающие обратные перевозки xij>0; i= 1, 2, …, k; j= 1, 2,., l.
Эти условия образуют систему ограничений. Любой план, компоненты которого удовлетворяют этой системе, будет допустимым.
Как видим, система ограничений задана в основном (k + l) уравнениями. Установим условия, при которых эта система будет совместной, т.е. будет иметь решения.
Сложим элементы xij матрицы перевозок по строкам, каждая строка в сумме дает Mi, и в итоге получим . Сложим те же элементы по столбцам, каждый столбец дает Nj, и в сумме получим . Но от перестановки слагаемых сумма не меняется, поэтому для любого допустимого плана обязательно будет выполняться условие
.
Равенство является необходимым условием совместности ограничений задачи.
Докажем и достаточность этого условия: если запасы равны потребностям, то всегда имеется допустимый план.
Действительно, пусть . Рассмотрим такие числа:
Убедимся, что эти числа образуют допустимый план. Для этого достаточно проверить, что они удовлетворяют всем ограничениям задачи.
Просуммируем эти числа по индексу i:
.
Но величины Nj, от индекса i не зависят и их можно вынести за знак суммы. В результате
или
,
Следовательно, взятые числа удовлетворяют группе уравнений (1).
Просуммируем эти числа по индексу j:
Вынося постоянные Mi и за знак суммы и имея в виду, что , получаем
или в развернутом виде
Как видим, наши числа удовлетворяют группе уравнений (1). Эти числа неотрицательны, т.е. система ограничений полностью удовлетворяется. Таким образом, допустимый план существует, что и требовалось доказать.
Равенство запасов потребностям есть необходимое и достаточное условие совместности и, следовательно, разрешимости транспортной задачи. [5]
4. Свойство системы
ограничений транспортной
Согласно теореме о структуре координат опорного плана задачи линейного программирования, в невырожденном опорном плане должно содержаться r отличных от нуля координат, где r - ранг системы ограничений
.
В этой системе ограничений уравнений закрытой транспортной задачи имеется k+l-1 линейно-независимых уравнений, т.е. ранг системы ограничений равен k+l-1. [6]
5. Опорное решение транспортной задачи
Опорное решение (опорный план, базисное решение, basic solution) - одно из допустимых решений, находящихся в вершинах области допустимых решений. Оно является решением системы линейных ограничений, которое нельзя представить в виде линейной комбинации никаких других решений.
При решении задачи линейного
программирования можно поступить
следующим образом: найти любое
из таких "вершинных" решений, не
обязательно оптимальное, и принять
его за исходный пункт расчетов.
Такое решение и будет
6. Методы построения начального опорного решения
6.1 Построение
первоначального плана по
В этом случае не обращают внимания на показатели затрат. Начав заполнение с клетки (1.1) - "северо-западного угла" таблицы, ступенями спускаются вниз до клетки (k, l), вычеркивая либо одну строку, либо один столбец. На последнем шаге вычеркиваются последняя (k-я) строка и последний (l-й) столбец. При практическом заполнении таблицы, вычеркивание строк и столбцов производится лишь мысленно.
Когда осуществляется первоначальное
распределение поставок, то не ставится
цель получить оптимальное распределение.
Достижению этой цели служат последующие
этапы решения задачи. Они заключаются
в переходах к новым
6.2 Построение
первоначального плана по
При построении первоначального плана по способу северо-западного угла совершенно не учитываются тарифы, потому план получается весьма далеким от оптимального. Для решения задачи приходится делать много приближений (шагов).
Способ минимального элемента учитывает тарифы и потому позволяет найти план, более близкий к оптимальному.