Автор: Пользователь скрыл имя, 01 Апреля 2013 в 23:34, реферат
В залежності від строгості правил виводу розрізняють два види умовиводів: демонстративні (необхідні) – наслідок необхідно слідує із засновків і недемонстративні (правдоподібні) – лише ймовірне слідування висновку із засновків. По направленості логічного слідування, тобто по характеру зв’язку між знанням різної ступені загальності, яке виражене в засновках і висновку. З цієї точки зору розрізняють три види умовиводів: дедуктивні (від загального знання до часткового), індуктивні (від часткового до загального) і умовиводи по аналогії (від часткового до часткового).
Поняття про умовивід.
Види умовиводів.
Простий категоричний силогізм.
Умовиводи зі складних суджень.
Правила логіки висловлювання.
Скорочені і складноскорочені силогізми.
Поняття індукції. Повна індукція.
Неповна індукція. Популярна індукція.
Наукова індукція.
Взаємозв’язок індукції та дедукції.
Практичне значення цієї залежності.
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ
ім. ВАДИМА ГЕТЬМАНА
РЕФЕРАТ
з дисципліни: Логіка
на тему: «Умовивід»
Виконав: Михайлишин Віктор
студент 14-ї групи,
І-го курсу,
спец. 6508
Перевірив: Скалянчук В.С.
Київ 2010
План
Знання, які ми виводимо з уже існуючих є опосередкованими чи виводними. Логічною формою отримання виводних знань є умовиводи.
Умовивод – це форма мислення, за допомогою якої із одного чи декількох суджень виводиться нове судження. Любий умовивід складається з засновків і висновка, перехід – вивод (логічне – слідування).
В залежності від строгості правил виводу розрізняють два види умовиводів: демонстративні (необхідні) – наслідок необхідно слідує із засновків і недемонстративні (правдоподібні) – лише ймовірне слідування висновку із засновків. По направленості логічного слідування, тобто по характеру зв’язку між знанням різної ступені загальності, яке виражене в засновках і висновку. З цієї точки зору розрізняють три види умовиводів: дедуктивні (від загального знання до часткового), індуктивні (від часткового до загального) і умовиводи по аналогії (від часткового до часткового).
Розглянемо дедуктивний умовивод.
Дедуктивним (лат. deductio –
“виведення”) є умовивод, в якому
перехід від загального до часткового
є логічно необхідним. В залежності
від кількості засновків
До побудованих за допомогою
переробки безпосередніх
1) Перетворення – переробка
судження в судження, протилежне
по якості з предикатом, який
протирічить предикату
І в О ; О в І .
2) Обернення – перетворення
судження в результаті якого
суб’єкт вихідного судження
А обертається в І, тобто з обмеженням (S+) – (P-) à (S-) – (P-).
І в І
Е в Е
Частковоствердне виділяючи судження (Р+) перетворюється в загально ствердне
О – не підлягає оберненню.
3) Протиставлення предикату – це перетворення судження, в результаті якого S стає поняття, яке протирічить Р, а Р – S вихідного судження.
А перетворюється в Е
Е в І
І за допомогою протиставлення не перетворюється.
О в І
4) Умовиводи за “логічним
квадратом”. Виводи встановлюють
слідування істинності чи
Розглянемо ці виводи:
Відношення протиріччя (котрадикторності) (А-О, Е-І) схеми: Aà~O, ~AàO, Eà~I, ~EàI.
Відношення протилежності (контрарності) (А-Е) схеми: Aà~E, Eà~A, ~Aà(Ev~E), ~Eà(Av~A).
Відношення часткової сумісності (субконтрарності) (І-О) схеми по яким будуються виводи: ~IàO, ~OàI, Ià(Ov~O), Oà(Iv~I).
Відношення підпорядкування (А-І, Е-О) схеми: AàI, EàO, EàO, Ià(Av~A), Oà(Ev~E), ~Ià~A, ~Oà~E, ~Aà(Iv~I), E(Ov~O).
3. Широко розповсюдженим
видом опосередкованих
Поняття, які входять в
силогізм є термінами силогізму.
Розрізняють три терміни
Менший термін – це поняття, яке у висновку стає суб’єктом; більшим терміном є поняття, яке у висновку стає предикатом. Це крайні терміни і відповідно позначаються: менший – S, більший – Р. S – міститься у меншому засновку, Р – у більшому. Середній термін це поняття, яке входить в засновки, але відсутнє у висновку – позначається латинською буквою М (medin).
Звинувачений (М) має право на захист (Р).
Гусєв (S) – звинувачений (М).
Гусєв (S) має право на захист (Р).
Отже, простий категоричний
силогізм – це умовивід про відношення
двох крайніх термінів на основі їх
відношення до середнього терміну. Логічний
перехід від засновків до висновку
в категоричному силогізмі
Загальні правила
І. Правила термінів:
1) в силогізмі повинно бути тільки три терміни;
2) середній термін повинен
бути розподілений хоча би
в одному з засновків (інакше
зв’язок між крайніми
(М-) – Р
S – (M -)
3) термін не розподілений в засновку, не може бути розподілений і в висновку:
М – (Р+)
М – (S-)
(S-) – (P+).
ІІ. Правила засновків:
1) хоча би один із
засновків повинен бути
М – Р
S – M
2) якщо б один із
засновків – заперечне
3) хоча б один із
засновків повинен бути
4) якщо один із засновків часткове судження, то і висновок буде частковим
(М+) – (Р-)
(S-) – (М-)
(S-) – (P-).
Фігури категоричного силогізму:
Фігури силогізму – це його різновиди, які розрізняються місцем середнього терміна в засновках.
Модусом простого категоричного
силогізму є різновиди
1 фігура: ААА, ЕАЕ, АІІ, ЕІО.
2 фігура: ЕАЕ, АЕЕ, ЕІО, АОО,
3 фігура: ААІ, ІАІ, АІІ, ЕАО, ОАО, ЕІО.
4 фігура: ААІ, АЕЕ, ІАІ, ЕАО, ЕІО.
Правила 1-ї фігури: 1. Більший засновок – загальне судження.
2. Менший – ствердне судження.
1 фігура – найбільш
типова форма дедуктивного
Правила 2-ї фігури: 1. Більший засновок – загальне судження.
2. Один із засновків – заперечне судження.
Правила 3-ї фігури: 1. Менший – ствердне.
2. Висновок – часткове судження.
Правила 4-ї фігури не розглядаються, бо вони не ти пічні для мислення – звича йно це виводи 1 фігури.
Умовиводи з суджень з відношеннями:
Умовиводи, засновки і висновки яких є судженнями з відношеннями, є умовиводи з відношеннями.
Петро – брат Івана.
Іван – брат Сергія.
Петро – брат Сергія.
Логічною основою умовиводів з суджень з відношеннями є властивості відношень, найважливіші з них: 1) симетричне (спів мірне) відношення між х↔у, і у↔х; хRy ↔ yRx;
2) рефлексивне (відображення) – це відношення рівності і одночасності (а=в, то а=а, в=в) xRy à yRx.
3) транзитивне (перехід) – ця якщо воно має місце між х і z, тоді, коли воно має місце між х і у та між у і z – це відношення рівності (а=в, в=с, то а=с) і одночасності (х коли у і у коли z, то х коли подія z), відношення “більше-менше” (а менше в, в – с, отже а – с) і ін. (пізніше, більше і т.д.). (xRy Λ yRz) à xRz.
Умовиводи будуються
не тільки з простих, але
і зі складних суджень. Широко
використовуються умовиводи,
Чисто умовний умовивід – обидва засновки є умовними судженнями:
Якщо а, то в. В символічному записі:
Якщо в, то с. (рàq ) Λ (qàr)
Якщо а, то с. pàr
Висновок в ньому будується на правилі: наслідок наслідку є наслідок підстави (основания).
Умовно-категоричний умовивід – умовивід, в якому один із засновків – умовне, а другий засновок і висновок – категоричні судження.
Якщо а, то в. В символічному записі:
a (рàq ), р
в q
Цей умовивід дістав назву стверджуючого модусу (modus ponens – МР). Міркування направлене від ствердження основи до ствердження наслідку.
Modus ponens дає достовірні висновки.
Інший модус, який дає достовірний висновок, є заперечуючий модус (modus tollens – МТ), в якому засновок виражений категоричним судженням, заперечує істинність наслідку, а висновок заперчує істинність основи (підстави). Міркування направлено від заперечення наслідку до заперечення основи.
Якщо А, то В. В символічному записі:
В (рàq ), ~q
Ā ~p
Міркування направлено від заперечення основи до заперечення наслідку.
Якщо А, то В. В символічному записі:
не-А рàq, ~р
не-В ~q
Міркування направлено від ствердження наслідку до ствердження основи:
Якщо а, то в. В символічному записі:
в рàq, q
а p
Два перших модуси виражають закони логіки і є правильними модусами умовно-категоричного судження. Вони підлягають правилу: ствердження основи веде до ствердження наслідку і заперечення наслідку – до заперечення основи. Два інших модуси (3) і (4) достовірних висновків не дають і є неправильними модусами. Вони підкоряються правилу: заперечення основи не веде з необхідністю до заперечення наслідку і ствердження наслідку не веде з необхідністю до ствердження основи.
(рàq ) Λ р)àq – табл. істинності (приклад), ствердний модус.
Можливо і так: і основа і наслідок більшого засновку є як ствердними, так і заперечу вальними судженнями: рà~q, p .
~q
Виділяючи умовні судження достовірні у всіх чотирьох модусах.
Розділово-категоричний – умовивід, в якому один із засновків – розділовий, а інший засновок і висновок – категоричні судження. Розрізняють два модуси розділово-категоричного умовиводу: 1) Ствердно-заперечний (modus ponento tollens – MPT) – менший засновок - категоричне судження – стверджує один член V, висновок – також категоричне судження – заперечує інший її член:
а або в В символічному записі:
а р v q, р
не-в ~q
Висновок достовірний, якщо виконується правило: більший засновок повинен бути виключаючим розділовим судженням, чи судження строгої V-ї.
Заперечно-ствердний модус (modus tollendo ponens – MNP) – менший засновок заперечує один диз’юнкт, висновок стверджує інший:
а чи в В символічному записі:
не а <р v q>, ~р < ... > - закрит. v.
в q
Висновок достовірний, якщо виконане правило: в більшому засновку повинні бути перераховані всі можливі судження – диз’юнктивне, тобто, велкий засновок повинен бути повним (закритим) диз’юнктивним висловлюванням.
Умовно-розділювальний – умовивід, в якому один засновок умовне, а інший розділове судження (чи лемматичний умовивід lemma – припущення). Розділове судження може містити дві і більше альтернативи, тому тематичний умовивід ділиться на дилеми, трилеми і т.д.