Автор: Пользователь скрыл имя, 09 Сентября 2012 в 10:58, реферат
Рассмотрим построение триадной кривой, которую впервые исследовал в 1904 году шведский математик Хельге фон Кох (рисунок 1.1.1).
Возьмем прямолинейный отрезок длины 1. Назовем его затравкой. Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть, и заменим ее ломаной из двух звеньев длиной 1/3 таким образом, чтобы средняя часть оказалась основанием равностороннего треугольника со стороной 1/3. Мы получили ломаную, состоящую из четырех звеньев с общей длиной 4/3 – так называемое первое поколение.
Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена аналогично отбросить и заменить среднюю часть.
Соответственно, длина второго поколения будет равна 16/9, третьего – 64/27 и так далее.
Если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.
Глава 1 Исторические предпосылки фрактальной логики
1.1 Математические “монстры” - примеры и проблемы
1.2 Логические парадоксы – примеры и проблемы
1.3 “Монстры” и парадоксы – неслучайные совпадения.
1.4 Исторический очерк фрактальной геометрии
1.5 Принцип дополнительности фрактальной геометрии
1.6 Парадоксы как фракталы. Фрактальная логика: обратная связь как модель “монстров” и парадоксов
1.7 Парадокс лжеца: логический формализм через понятие обратной связи.
Глава 2 Логические ряды и логические фракталы
2.1 Определение логического ряда. Виды рядов.
2.2 Процедуры генерации логических рядов с помощью обратных связей. Прямая и обратная задача генерации логического ряда.
2.3 Операции с логическими рядами
2.4 Кортежи, масштабы и инварианты логических рядов. Самоподобие. Определение регулярного логического фрактала.
2.5 Формализм масштабного преобразования. Определение преобразованных логических фракталов.
2.6 Монады. Монадология.
2.7 Тезис о построении логического фрактала через два типа обратных связей
2.8 Количественные характеристики логических фракталов
Послесловие: проблемы и задачи фрактальной логики