Авария на Чернобыльской АЭС

Автор: Пользователь скрыл имя, 29 Июля 2011 в 20:31, курсовая работа

Описание работы

В настоящей работе мною была использована литература, которая обозревает данную проблему с разных сторон: социальной, исторической, экологической, политической, экономической, международной, национальной, хронологической, научной.

Цель автора состоит в том, чтобы раскрыть данную тему, а также свободно владеть материалом. Задача автора состоит в том, чтобы изучить литературу и научиться с ней работать.

Содержание

Введение

Глава I. Припять и Чернобыль………………………………………………………………..4

1.1. Город Чернобыль…………………………………………………………………..4

1.2. Город Припять…………………………………………………………………......6

Глава II. Чернобыльская катастрофа и ее характеристика…………………………………..9

2.1. Предпосылки к катастрофе………………………………………………………..9

2.2. Особенности реактора РБМК-1000……………………………………………..10

2.3. Хроника Чернобыльской катастрофы…………………………………………...11

2.4. Расследование причин Чернобыльской аварии…………………………............15

2.5. Суть проблемы…………………………………………………………………….16

2.6. Последствия катастрофы на ЧАЭС.......................................................................20

2.7. Предпринятые меры...............................................................................................22

Глава III. Экоэкономика чернобыльского экологического феномена..................................25
Глава IV. Социальная сфера.....................................................................................................27
Глава V. Чернобыльская катастрофа: международный аспект.............................................29

Заключение

Список литературы

Работа содержит 1 файл

Чернобыльская АЭС.doc

— 200.00 Кб (Скачать)

  Преобладающие ветры - западные и северо-западные, их скорость 3-5 м/с. На 26 апреля 1986 года имели место аномальные явления: господствовали слабые восточные и южные ветры (направление 100-180 градусов на высоте 0-6 км). За первые 7-10 суток с момента аварии направление ветра неоднократно менялось: 26 апреля - ветер восточный, 26-27 апреля - юго-восточный, 28-29 апреля - юго-западный, 29-30 апреля - северо-западный и северный. Такое изменение ветра и обусловило формирование радиационной обстановки.

  Города  и поселки (за исключением г.Припяти) имеют плотную, средневысокую застройку, дома кирпичные, деревянные и глинобитные. Основным источником водоснабжения в городах являлся водопровод, в сельской местности - шахтные колодцы.

  Строительство АЭС велось в три очереди. Каждая по два энергоблока, имевшие общие  системы спецводоочистки и вспомогательные  сооружения (хранилища жидких и твердых радиоактивных отходов, распределительные устройства, газовое хозяйство, резервные дизель-генераторные электростанции, гидротехнические и другие сооружения). Источником технического водоснабжения первых четырех энергоблоков являлся прудоохладитель площадью 22 км2. К 1986 году в эксплуатации находились 4 энергоблока первой и второй очереди. В 1,5 км к юго-востоку от главного корпуса велось строительство двух энергоблоков третьей очереди.

  3-й  и 4-й энергоблоки - второе поколение  атомных станций этого типа и, в отличие от 1-го и 2-го энергоблоков, они располагались не отдельно, а в одном здании, т.е. разделялись друг от друга только внутренними стенами и служебными помещениями. 5-й и 6-й энергоблоки планировалось ввести в 1986 и 1988 годах соответственно.

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ГЛАВА II. ЧЕРНОБЫЛЬСКАЯ КАТАСТРОФА И ЕЕ ХАРАКТЕРИСТИКА 

  2.1. Предпосылки к  катастрофе 

  К весне 1986 года на Чернобыльской АЭС  действовали четыре энергоблока. Каждый энергоблок состоит из ядерного реактора и двух паровых турбин. Все четыре реактора однотипные РБМК-1000.    

    Реактор не только источник  электроэнергии, но и ее потребитель.  Пока из активной зоны реактора  не будет выгружено ядерное  топливо, через нее необходимо  непрерывно прокачивать воду  для того, чтобы не перегрелись ТВЭЛы. Обычно часть электрической мощности турбин отбирается на собственные нужды реактора. Если реактор остановлен (замена топлива, профилактические работы, аварийная остановка), то электропитание реактора идет от соседних блоков, внешней электросет. На крайний аварийный случай предусмотрено питание от резервных дизель-генераторов. Однако в самом лучшем случае  они смогут начать выдавать электроэнергию не раньше, чем через одну - три минуты. Необходимо было выяснить - сколько времени с момента отключения подачи пара на турбины, они, вращаясь по инерции, будут вырабатывать ток, достаточный для аварийного питания основных систем реактора. Первые испытания показали, что турбины не могут обеспечить электроэнергией основные системы в режиме вращения по инерции (режим выбега). Специалисты "Донтехэнерго" предложили свою систему управления магнитным полем турбины, что обещало решить проблему энергопитания реактора  при аварийном отключении подачи пара  на турбину. 25 апреля предполагалось опробовать эту систему в работе, т.к. 4-й энергоблок в этот день все равно планировалось остановить для ремонтных работ. Однако требовалось, во-первых, что-то использовать в качестве балластной нагрузки для того,  чтобы можно было производить замеры на выбегающей турбине. Во-вторых, было известно, что при падении тепловой мощности реактора до 700-1000 мегаватт сработает система аварийной остановки реактора (САОР), реактор будет остановлен и невозможно будет повторить эксперимент несколько раз, т.к. произойдет его ксеноновое отравление. Было решено заблокировать систему САОР, а в качестве балластной нагрузки использовать резервные ГЦН.

  Это были ПЕРВАЯ и ВТОРАЯ трагические  ошибки, повлекшие за собой все  остальное. Во-первых, совершенно незачем  было блокировать САОР. Во-вторых, использовать можно было в качестве балластной нагрузки что угодно, только не циркуляционные насосы. Именно они связали между собой совершенно далекие друг от друга электротехнические процессы и процессы, происходящие в реакторе.

  2.2.  Особенности реактора РБМК-1000 

  Реактор 4-го блока являлся серийным, типа РБМК-1000 (реактор большой мощности, канальный). Это реактор на тепловых нейтронах, замедлителем в котором  служит графит. Реактор размещался в наземной бетонной шахте размером 21,6 х 21,6 х 25,6 м, которая являлась средством биологической защиты. Графитовая кладка была заключена в цилиндрический корпус толщиной 30 мм. Реактор опирался на бетонное основание, под которым располагался бассейн-барботер системы локализации аварии.

  В качестве ядерного топлива использовалась слабообогащенная по урану-235 двуокись урана. Стационарная загрузка топлива в один реактор составляла свыше 190 тонн. Каждая тонна ядерного топлива содержала примерно 20 кг ядерного горючего (урана-235). Ядерное топливо было загружено в реактор в виде тугоплавких таблеток, помещенных в трубках из циркониевого сплава - ТВЭлах (тепловыделяющих элементах).

  ТВЭлы размещались в активной зоне в  виде тепловыделяющих сборок (ТВС), объединяющих по 18 ТВЭлов. Эти сборки (около 1700 штук) помещались в специальные вертикальные технологические каналы в графитовой кладке. По этим же каналам циркулировал теплоноситель (вода), которая в результате теплового воздействия от происходящей в реакторе цепной реакции доводилась до кипения. Пар через специальные коммуникации подавался на турбину, которая вырабатывала электрическую энергию. По мере выгорания топлива кассеты с ТВЭлами заменялись в ходе работы реактора без понижения его мощности. К моменту аварии активная зона реактора 4-го энергоблока содержала 1659 кассет с ТВЭлами, 75% которых проработали 600 эффективных суток. Общая активность приближалась к предельной величине и составляла 1500 МКи.

  Кругооборот воды в реакторе осуществлялся шестью работающими и двумя резервными главными циркуляционными насосами (ГЦН). В цилиндре активной зоны имелись сквозные отверстия (трубы), в которых размещалось 211 стержней регулирования из бористой стали или карбида бора, поглощающих нейтроны, а также регулирующих изменение скорости нейтронного потока. По мере извлечения стержней из активной зоны (поднятия вверх)начиналась цепная реакция и нарастание мощности реактора (чем выше извлечены стержни, тем больше мощность). Однако в любом случае количество опущенных в активную зону стержней должно быть не менее 28-30 (после Чернобыльской аварии установлено, что в нижнем положении должно находиться не менее 70 стержней) для того, чтобы способность реактора к разгону не превысила возможность поглощающих стержней при необходимости заглушить реактор. Эти 28-30 стержней (в настоящее время - 70) составляли так называемый оперативный запас реактивности. В момент аварии в крайнем верхнем положении находились 205 стержней (по свидетельству старшего инженера управления реактором - 193), т.е. внизу оставалось только 6 стержней (или 18), что являлось грубейшим нарушением регламента эксплуатации.

  Реактор имел также противоаварийные системы. Прежде всего это система управления и защиты реактора (СУЗ). Она обеспечивала пуск, автоматическое и ручное регулирование  мощности, плановую и аварийную остановку реактора. Аварийная остановка осуществлялась по сигналам аварийной защиты (АЗ) или при нажатии специальной кнопки. Аварийная защита должна срабатывать при превышении заданных уровней и скорости нарастания нейтронного потока, при отказах в работе оборудования, а также при превышении значений технологических параметров. По сигналу АЗ в активную зону автоматически должны быть введены все стержни СУЗ, чтобы заглушить реактор. В случае разрыва труб контура многократной принудительной циркуляции, по которому протекает теплоноситель, должна включаться система аварийного охлаждения реактора (СА-ОР) и в течение 45 секунд подавать воду из гидроемкостей в технологические каналы до постоянной подачи воды от специальных насосов. 
 

  2.3. Хроника Чернобыльской катастрофы    

     25 апреля 1986г. 1.00. Начато постепенное снижение мощности реактора.

  13.05. Мощность реактора снижена с  3200 мегаватт до 1600. Остановлена турбина  №7. Питание электросистем   реактора переведено на турбину №8.

  14.00. Заблокирована система аварийной остановки реактора САОР. В это время диспетчер "Киевэнерго" распорядился задержать остановку блока (конец недели, вторая половина дня, растет потребление энергии). Реактор работает на половинной мощности, а САОР так и не подключена вновь. Это грубая ошибка персонала, но на развитие событий она не повлияла.

  23.10. Диспетчер снимает запрет. Персонал  начинает снижать мощность реактора.

  26 апреля 1986г. 0.28. Мощность реактора  снизилась до уровня, когда систему  управления движением управляющих  стержней надо переводить с локальной на общую (в обычном режиме группы стержней можно перемещать независимо друг от друга - так удобнее, а при низкой мощности все стержни должны управляться с одного места и двигаться одновременно). Этого сделано не было. Это была ТРЕТЬЯ  трагическая ошибка. Одновременно оператор допускает ЧЕТВЕРТУЮ   трагическую ошибку. Он не выдает машине команду "держать мощность". В результате мощность реактора стремительно снижается до 30 мегаватт. Кипение в каналах резко снизилось, началось ксеноновое отравление реактора. Персонал смены допускает ПЯТУЮ   трагическую ошибку (я бы действиям смены в этот момент дал бы иную оценку. Это уже не ошибка, а преступление. Все инструкции предписывают в такой ситуации глушить реактор). Оператор выводит из активной зоны все управляющие стержни.

  1.00. Мощность реактора удалось поднять  до 200 мегаватт против предписанных  программой испытаний  700-1000.  Из-за нарастающего ксенонового отравления реактора мощность поднять выше не удается.

  1.03. Начался эксперимент. К шести работающим главным циркуляционным насосам подключается в качестве балластной нагрузки седьмой насос.

  1.07. Подключается в качестве балластной  нагрузки восьмой насос. На  работу такого количества насосов  система не рассчитана. Начался  кавитационный срыв ГЦН (им просто не хватает воды). Они высасывают воду из барабанов сепараторов и ее уровень в них опасно понижается. Огромный поток довольно холодной воды через реактор снизил парообразование до критического уровня. Стержни автоматического регулирования машина полностью вывела из активной зоны.

  1.19. Вследствие опасно низкого уровня  воды в барабанах сепараторах  оператор увеличивает подачу  в них питательной воды (конденсата). Одновременно персонал допускает  ШЕСТУЮ   трагическую ошибку ( я бы сказал - второе преступное деяние). Он блокирует системы остановки реактора по сигналам недостаточного уровня воды и давлению пара.

  1.19.30 Уровень воды в барабанах сепараторах  начал расти, но из-за снижения  температуры воды, поступающей в  активную зону реактора и ее большого количества, кипение там прекратилось. Последние стержни автоматического регулирования покинули активную зону. Оператор допускает СЕДЬМУЮ   трагическую ошибку. Он полностью выводит из активной зоны и последние стержни ручного управления, лишая себя тем самым возможности управлять процессами, происходящими в реакторе. Дело в том, что высота реактора 7 метров,  и он хорошо отзывается на перемещение управляющих стержней, когда они перемещаются в средней части активной зоны, а по мере удаления их от центра управляемость ухудшается. Скорость перемещения стержней 40см. в сек.

  1.21.50 Уровень воды в барабанах-сепараторах  несколько превысил норму, и  оператор отключает часть насосов.

  1.22.10 Уровень воды в барабанах сепараторах  стабилизировался. В активную зону теперь поступает намного меньше воды, чем до этого момента. В активной зоне вновь начинается кипение.

  1.22.30 Из-за неточности систем управления, не рассчитанных на подобный  режим работы оказалось, что  подача воды в реактор составляет  около 2/3 от потребного. В этот момент компьютер станции выдает распечатку параметров реактора с указанием на то, что запас реактивности опасно мал. Однако персонал просто проигнорировал эти данные (это было третье преступное деяние в эти сутки). Инструкция предписывает в такой ситуации немедленно аварийным порядком глушить реактор.

  1.22.45 Уровень воды в сепараторах   стабилизировался, количество поступающей в реактор воды удалось привести в норму. Тепловая мощность реактора медленно начала расти. Персонал предположил, что работу реактора удалось стабилизировать и было решено продолжить эксперимент. Это была   ВОСЬМАЯ     трагическая ошибка. Ведь практически все стержни управления находились в поднятом положении, запас реактивности был недопустимо мал, САОР отключена, системы автоматической   остановки реактора по ненормальному давлению пара и уровню воды  заблокированы.   

  1.23.04 Персонал блокирует систему аварийной  остановки реактора, срабатывающую  в случае прекращения подачи  пара на  вторую турбину, если до этого уже была выключена первая. Напомню, что турбина № 7 была выключена еще в 13.05 25.04 и сейчас работала только турбина №8. Это была   ДЕВЯТАЯ трагическая ошибка. ( и четвертое преступное деяние в эти сутки). Инструкция запрещает отключать эту систему аварийной остановки реактора во всех случаях. Одновременно персонал перекрывает подачу пара на турбину №8. Это идет эксперимент по замеру электрических характеристик работы турбины в режиме выбега. Турбина начинает терять обороты, напряжение в сети снижается и ГЦН, питающиеся от этой турбины начинают снижать обороты.    

    Следствие установило, что если  бы не была отключена система  аварийной остановки реактора  по сигналу прекращения подачи  пара на последнюю турбину,  то катастрофы не произошло  бы. Автоматика бы заглушила реактор. Но персонал предполагал повторить эксперимент несколько раз на различных параметрах управления магнитным полем генератора. Остановка реактора исключала такую возможность.

  1.23.30 ГЦН значительно снизили обороты  и поток воды через активную  зону реактора значительно уменьшился. Стало быстро нарастать парообразование. Три группы стержней автоматического управления пошли вниз, но остановить нарастание тепловой мощности реактора не смогли, т.к. их уже было недостаточно. Т.к. подача пара на турбину была отключена, то ее обороты продолжали снижаться, насосы все меньше подавали воды в реактор.

  1.23.40 Начальник смены, поняв происходящее, приказывает  нажать кнопку АЗ-5.  По этой команде стержни управления с максимальной скоростью опускаются вниз. Такое массированное введение в активную зону реактора поглотителей нейтронов призвано в короткое время полностью прекратить процессы ядерного деления. Это была   Последняя ДЕСЯТАЯ трагическая ошибка персонала и последняя непосредственная причина катастрофы. Хотя следует сказать, что если бы эта последняя ошибка не была бы совершена, то  все равно катастрофа уже была неминуема.

Информация о работе Авария на Чернобыльской АЭС