Автор: Пользователь скрыл имя, 11 Декабря 2011 в 12:05, реферат
В наше время нельзя забывать о великих научных деятелях, которые дали толчок развитию науки. Именно они положили начало огромнейшему обогащению в различных сферах деятельности. Отсюда следует, что значение их трудов и достижений достаточно велико, так как именно эти достижения мы применяем и по сей день, что не может быть неактуально в наше время.
Целью данного реферата является изучение биографии, научной деятельности французского математика, астронома и механика Жозефа Луи Лагранжа. Необходимо рассмотреть его достижения и оценить вклад в науку.
Введение………………………………………………………………………3стр.
Первые достижения……………………………………………………5стр.
Берлинский период……………………………………………………8стр.
Годы Французской революции………………………………………11стр.
Последние годы и смерть……………………………………………14стр.
Труды Жозефа Луи Лагранжа………………………………………15стр.
Интересные факты……………………………………………………16стр.
Заключение…………………………………………………………………...18стр.
Список литературы………………
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ
ФЕДЕРА
ФГБОУ ВПО «Ишимский государственный педагогический институт
им. П. П. Ершова»
Кафедра математики,
информатики и методики их преподавания
Р
ТЕМА:
Жозеф Луи Лагранж
Исполнитель:
студент 111 группы 1 курса физико-математического
факультета Данишкина Светлана
Проверил: преподаватель
Кирносова
Ольга Александровна
Оглавление
Введение…………………………………………………………
Заключение……………………………………………………
Список литературы…………………………………
Введение:
В наше время нельзя забывать о великих научных деятелях, которые дали толчок развитию науки. Именно они положили начало огромнейшему обогащению в различных сферах деятельности. Отсюда следует, что значение их трудов и достижений достаточно велико, так как именно эти достижения мы применяем и по сей день, что не может быть неактуально в наше время.
Целью данного реферата является изучение биографии, научной деятельности французского математика, астронома и механика Жозефа Луи Лагранжа. Необходимо рассмотреть его достижения и оценить вклад в науку.
В соответствии целью нашего исследования были поставлены следующие задачи:
При написании данной работы огромную помощь оказали журналы и
книги различных изданий.
Я выбрала данную тему, потому что для меня интересна не только
биография известного математика, но и его труды. Это тема достаточно
обширная. В данном реферате я начну с рассмотрения биографии Жозефа
Луи Лагранжа. Далее будем рассматривать труды этого великого математика.
3
Жозеф Луи Лагранж
(фр. Joseph Louis Lagrange, итал. Giuseppe Lodovico Lagrangia;
25 января 1736, Турин — 10 апреля 1813, Париж)
Французский математик, астроном и механик итальянского происхождения. Наряду с Эйлером — лучший математик XV111 века. Особенно прославился исключительным мастерством в области обобщения и синтеза накопленного научного материала.
Автор классического трактата «Аналитическая механика», в котором установил фундаментальный «принцип возможных перемещений» и завершил: математизацию механики. Внёс грандиозный вклад в развитие анализа, теории чисел, теорию вероятностей и численные методы, создал вариационное исчисление.
"Лагранж — величественная
пирамида математических наук". Так
выразил Наполеон Бонапарт свою оценку,
по его мнению, величайшего и самого скромного
математика XVIII столетия Жозефа Луи Лагранжа,
которого он сделал сенатором, графом
империи и командором ордена Почетного
легиона. Король Сардинии и Фридрих Великий
также воздавали Лагранжу почести, но
в меньшей мере, чем император Наполеон.
4
Отец Лагранжа, одно время военный казначей Сардинии, был женат на Марии Терезии Гро, единственной дочери богатого врача из Камбиано (местечко неподалеку от Турина в Италии), и имел с ней 11 детей. Из них один лишь самый младший Жозеф Луи, родившийся 25 января 1736 года, не умер в младенческом возрасте. Его отец был состоятельным человеком, но также и неисправимым дельцом, и когда Жозеф Луи был готов вступить в свои права единственного наследника, было уже нечего наследовать. Из-за материальных затруднений семьи он был вынужден рано начать самостоятельную жизнь. Позже Лагранж вспоминал об этом несчастье как об одном из самых удачных событий, случившихся с ним: «Если бы я наследовал состояние, мне, вероятно, не пришлось бы связать свою судьбу с математикой».
Первые школьные интересы Лагранжа были сосредоточены на древних языках. Его отец хотел, чтобы сын стал адвокатом, и поэтому определил его в Туринский университет. В связи с изучением классики он рано познакомился с геометрическими сочинениями Евклида и Архимеда. Но последние, кажется, не произвели на него сильного впечатления. Затем в
руки юного Лагранжа попало сочинение Галлея (друга Ньютона) о преимуществах анализа над синтетическими геометрическими методами древних греков. Он был пленен и обращен в новую веру, почувствовав свое настоящее призвание. В невероятно короткое время он освоил совершенно самостоятельно все, что к тому времени было сделано в анализе, и в 16 лет стал преподавать математику в Артиллерийском училище в Турине. Так началась его деятельность, одна из самых ярких в истории математики.
С самого начала Лагранж был аналитиком, а не геометром. Его аналитическая обработка механики отмечает первый полный разрыв с традицией древних греков. Ньютон, его современники и непосредственные продолжатели постоянно пользовались чертежами, помогавшими им при исследовании задач механики. Лагранж отдавал предпочтение анализу. Эта
5
особенность его мышления четко выявилась в "Аналитической механике", задуманной еще 19-летним юношей в Турине, но изданной в Париже лишь в 1788 году, когда Лагранжу было 52 года. "Вы не найдете чертежей в этой книге", — писал он в предисловии. Лагранж показал, что большая гибкость и несравненно большая мощь достигаются, если общие аналитические методы используются с самого начала.
В 1755 году Лагранж был назначен преподавателем математики в Королевской артиллерийской школе в Турине, где пользовался, несмотря на свою молодость, славой прекрасного преподавателя. Молодой профессор читал лекции студентам, которые все были старше его. Вскоре из наиболее способных он организовал научное общество, которое выросло затем в Туринскую Академию наук. Первый том трудов академии вышел в 1759 году, когда Лагранжу было 23 года. Сам Лагранж представил здесь статью о максимумах и минимумах по вариационному исчислению. С помощью именно этого исчисления Лагранж унифицировал механику и, как сказал Гамильтон, создал "своего рода научную поэму".
В том же туринском томе Лагранж делает другой большой шаг вперед: он применяет анализ к теории вероятностей, существенно продвигается дальше Ньютона в математической теории звука. В 23 года Лагранж был признан равным величайшим математикам века — Эйлеру и Бернулли.
Эйлер всегда великодушно оценивал работы других ученых. Когда 19-летний Лагранж послал Эйлеру некоторые из своих работ, знаменитый математик сразу же признал их достоинства и поощрил блестящего начинающего ученого. 4 года спустя Лагранж сообщил Эйлеру подлинный метод решения изопериметрических задач вариационного исчисления, которые не поддавались в течение многих лет полугеометрическим методам Эйлера. Но вместо того чтобы поторопиться с печатанием решения, которое он искал много лет, Эйлер откладывает его до того времени, пока Лагранж не сможет первым опубликовать его, — "чтобы не лишить Вас ни одной частицы славы, которую Вы заслуживаете".
6
К
этому можно добавить, что Эйлер
добился избрания Лагранжа
иностранным членом Берлинской академии
наук (2 октября 1759 года),
несмотря на необычно молодой возраст
— 23 года. Это официальное
признание за границей было большой
помощью для Лагранжа на родине.
Эйлер
и Даламбер, отчасти по личным мотивам,
жаждали видеть своего
блестящего юного друга придворным математиком
в Берлине. После
длительных переговоров они добились
своего.
Будучи
преданным другом и великодушным
поклонником Лагранжа,
Даламбер поощрял своего скромного юного
друга заниматься трудными и
важными задачами. Он также заставил Лагранжа
благоразумно заботиться о
своем здоровье, хотя и его собственное
здоровье не было крепким. На письма
Даламбера Лагранж кратко отвечал, что
он чувствует себя превосходно и
работает, как сумасшедший. Но, в конце
концов, он заплатил за это. В этом
отношении деятельность Лагранжа сходна
с деятельностью Ньютона. К
среднему возрасту длительное сосредоточение
на задачах первостепенной
важности притупило энтузиазм Лагранжа,
и, хотя его ум оставался по-
прежнему мощным, он стал безразлично
относиться к математике. К счастью
для математики, до черной депрессии Лагранжа
с ее неизбежным следствием
— убеждением, что никакое человеческое
знание не стоит того, чтобы к нему
рьяно стремиться, — оставалось еще 20
славных лет с того времени, как Эйлер
и Даламбер замыслили привлечь Лагранжа
в Берлин.
В
1759 году Лагранж издает труды по
механике и вариационному
исчислению, впервые применяет анализ
к теории вероятностей, развивает
теорию колебаний и акустику.
В
1762 году Лагранж дает первое описание
общего решения
вариационной задачи. Оно не было ясно
обосновано и встретило резкую
критику. Эйлер в 1766 году дал строгое обоснование
вариационным методам
и в дальнейшем всячески поддерживал Лагранжа.
Среди
задач, которыми занимался Лагранж до
приезда в Берлин, была
задача о либрации Луны, пример знаменитой
задачи трех тел. Почему Луна
7
всегда обращена к Земле одной стороной и при этом имеются некоторые небольшие непонятные неправильности в ее движении. За решение задачи о либрации Луны: в данном случае три тела это Земля, Солнце, Луна, взаимно притягивающие друг друга обратно пропорционально квадрату расстояний между их центрами тяжести. Лагранжу в 1764 году была присуждена Большая премия Парижской академии наук - ему тогда было только 28 лет. Ободренная таким блестящим успехом, Академия предложила еще более трудную задачу, и Лагранж снова получил премию в 1766 году. Это была задача шести тел, материалом для которой послужила система Юпитера (Солнце, Юпитер и четыре спутника, известные к тому времени). Полное математическое решение находится вне пределов наших возможностей, но, применив приближенные методы, Лагранж значительно продвинулся в объяснении наблюдаемых неправильностей.
Такого рода применения ньютоновой теории представляли для Лагранжа наибольший интерес в течение всей его активной жизни. В 1772 году он снова получил Парижскую премию за работу о задаче трех тел, а в 1774 и 1778 годах добился аналогичного успеха в связи с работами о движении Луны и возмущениях комет.
6 ноября 176о году, по приглашению прусского короля Фридриха Второго, Лагранж переехал в Берлин (тоже по рекомендации Даламбера и Эйлера). Фридрих Великий, "величайший король Европы", как он "скромно" величал себя, приветствовал Лагранжа в Берлине, заявив, что он считает для себя честью иметь при своем дворе "величайшего математика". Последнее, во всяком случае, было верно. Лагранж стал директором физико-математического отделения Берлинской академии наук и в течение двадцати лет наполнял ее "Мемуары" своими выдающимися работами, следовавшими одна за другой. Читать лекции от него не требовалось.