Введение в анализ, синтез и моделирование систем

Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций

Описание работы

В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах

Содержание

1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем

Работа содержит 1 файл

АСИС.doc

— 1.75 Мб (Скачать)


Рис. 4.1.  Фрактальный объект (кривая Коха)

Уменьшив сложность системы, часто можно увеличить ее информативность, исследуемость.

Пример. Выбор рациональной проекции пространственного объекта (т.е. более оптимальная визуализация связей и отношений его частей) делает чертеж более информативным. Используя в качестве устройства эксперимента микроскоп, можно рассмотреть некоторые невидимые невооруженным глазом свойства объекта.

Система называется связной, если любые две подсистемы обмениваются ресурсом, т.е. между ними есть некоторые ресурсоориентированные отношения, связи.

При определении меры сложности системы важно выделить инвариантные свойства систем или информационные инварианты и вводить меру сложности систем на основе их описаний.

Здесь приводится математический аппарат, позволяющий формализовать понятие сложности, хотя отметим, что понятие сложности - "сложное".

Мерой ниже будем называть некоторую непрерывную действительную неотрицательную функцию, определенную на множестве событий (систем, множеств) и являющуюся аддитивной, т.е. мера конечного объединения событий (систем, множеств) равна сумме мер каждого события.

Как же определять меру сложности для систем различной структуры? Ответ на этот не менее сложный вопрос не может быть однозначным и даже вполне определённым.

Сложность связывается с мерой μ(S) - мерой сложности или числовой неотрицательной функцией (критерием, шкалой) заданной (заданным) на некотором множестве элементов и подсистем системы S.

Возможны различные способы определения меры сложности систем. Сложность структуры системы можно определять топологической энтропией - сложностью конфигурации структуры (системы):

S = k ln W,

где k=1,38×10-16 (эрг / град) - постоянная Больцмана, W - вероятность состояния системы. В случае разной вероятности состояний эта формула будет иметь вид (мы ниже вернемся к детальному обсуждению этой формулы и ее различных модификаций):

Пример. Определим сложность иерархической системы как число уровней иерархии. Увеличение сложности при этом требует больших ресурсов для достижения цели. Определим сложность линейной структуры как количество подсистем системы. Определим сложность сетевой структуры как максимальную из сложностей всех линейных структур, соответствующих различным стратегиям достижения цели (путей, ведущих от начальной подсистемы к конечной). Сложность системы с матричной структурой можно определить количеством подсистем системы. Усложнение некоторой подсистемы системы приведет к усложнению всей системы в случае линейной структуры, и, возможно, в случае иерархической, сетевой и матричной структур.

Пример. Для многоатомных молекул число межъядерных расстояний (оно определяет конфигурацию молекулы) можно считать оценкой сложности топологии (геометрической сложности) молекулы. Из химии и математики известна эта оценка: 3N-6, где N - число атомов в молекуле. Для твердых растворов можно считать W равной числу перестановок атомов разных сортов в заданных позициях структуры; для чистого кристалла W=1, для смешанного - W>1. Для чистого кристалла сложность структуры S=0, а для смешанного - S>0, что и следовало ожидать.

Пример. В эколого-экономических системах сложность системы может часто пониматься как эволюционируемость, сложность эволюции системы, в частности, мера сложности - как функция изменений, происходящих в системе в результате контакта с окружающей средой, и эта мера может определяться сложностью взаимодействия между системой (организмом, организацией) и средой, ее управляемости. Эволюционную сложность эволюционирующей системы можно определить как разность между внутренней сложностью и внешней сложностью (сложностью полного управления системой). Решения в данных системах должны приниматься (для устойчивости систем) таким образом, чтобы эволюционная сложность равнялась нулю, т.е. чтобы совпадали внутренняя и внешняя сложности. Чем меньше эта разность, тем устойчивее система, например, чем более сбалансированы внутрирыночные отношения и регулирующие их управляющие государственные воздействия - тем устойчивее рынок и рыночные отношения.

Пример. В математических, формальных системах сложность системы может пониматься как алгоритмизируемость, вычислимость оператора системы S, в частности, как число операции и операндов, необходимых для получения корректного результата при любом допустимом входном наборе. Сложность алгоритма может быть определена количеством операций, осуществляемых командами алгоритма для самого "худшего" (самого длительного по пути достижения цели) тестового набора данных.

Пример. Сложность программного комплекса L может быть определена как логическая сложность и измерена в виде L = L1 /L2 + L3 + L4 + L5, где L1 - общее число всех логических операторов, L2 - общее число всех исполняемых операторов, L3 - показатель сложности всех циклов (определяется с помощью числа циклов и их вложенности), L4 - показатель сложности циклов (определяется числом условных операторов на каждом уровне вложенности), L5 - определяется числом ветвлений во всех условных операторах.

Пример. Аналогично примеру, приведенному в книге Дж. Касти, рассмотрим трагедию В. Шекспира "Ромео и Джульетта". Выделим и опишем 3 совокупности: А - пьеса, акты, сцены, мизансцены; В - действующие лица; С - комментарии, пьеса, сюжет, явление, реплики. Определим иерархические уровни и элементы этих совокупностей.

А:

уровень N+2 - Пьеса;

уровень N+1 - Акты{a1, a2, a3, a4, a5};

уровень N - Сцены{s1, s2,..., sq};

уровень N-1 - Мизансцены{m1, m2, ..., m26}.

В:

уровень N - Действующие лица{c1,c2,...,c25}={Ромео, Джульетта,...}.

С:

уровень N+3 - Пролог (адресован непосредственно зрителю и лежит вне действий, разворачивающихся в пьесе);

уровень N+2 - Пьеса;

уровень N+1 - Сюжетные линии {p1, p2, p3, p4}={Вражда семейств Капулетти и Монтекки в Вероне, Любовь Джульетты и Ромео и их венчание, Убийство Тибальда и вражда семейств требует отмщения, Ромео вынужден скрываться, Сватовство Париса к Джульетте, Трагический исход};

уровень N - Явления {u1, u2, ..., u8}={Любовь Ромео и Джульетты, Взаимоотношения между семейством Капулетти и Монтекки, Венчание Ромео и Джульетты, Схватка Ромео и Тибальда, Ромео вынужден скрываться, Сватовство Париса, Решение Джульетты, Гибель влюблённых};

уровень N-1 - Реплики {r1, r2, ..., r104}={104 реплики в пьесе, которые определяются как слова, обращённые к зрителю, действующему лицу и развивающие неизвестный пока зрителю сюжет}.

Отношения между этими совокупностями на различных уровнях иерархии определяемы из этих совокупностей. Например, если Y - сюжеты, X - действующие лица, то естественно определить связь l между X, Y так: действующее лицо из совокупности X уровня N+1 участвует в сюжете Y уровня N+1. Тогда связность структуры трагедии можно изобразить следующей схемой (рис. 4.2):


Рис. 4.2.  Схема структурных связей пьесы

В этом комплексе K(Y, X) все три сюжета становятся отдельными компонентами только на уровне связности q=8. Это означает, что сюжетные линии могут быть различны только для зрителей, следящих за 9 действующими лицами. Аналогично, при q=6 имеются всего 2 компоненты {p1,p2}, {p3}. Следовательно, если зрители могут отслеживать только 7 персонажей, то они видят пьесу, как бы состоящую из двух сюжетов, где p1, p2 (мир влюбленных и вражда семейств) объединены. В комплексе K(Y, X) при q=5 имеются 3 компоненты. Следовательно, зрители, видевшие только 6 сцен, воспринимают 3 сюжета, не связанные друг с другом. Сюжеты р1 и р2 объединяются при q=4, и поэтому зрители могут видеть эти два сюжета как один, если следят только за 5 сценами. Все 3 сюжета сливаются, когда зрители следят лишь за 3 сценами. В комплексе K(Y, X) явление u8 доминирует в структуре при q=35, u3 - при q=26, u6 - при q=10. Следовательно, u8 вероятнее всего поймут те зрители, которые прослушали 36 реплик, хотя для понимания u3 необходимо 27 реплик, а для понимания u6 - только 11 реплик. Таким образом, проведенный анализ дает понимание сложности системы.

В последнее время стали различать так называемые "жесткие" и "мягкие" системы, в основном, по используемым критериям рассмотрения.

Исследование "жестких" систем обычно опирается на категории: "проектирование", "оптимизация", "реализация", "функция цели" и другие. Для "мягких" систем используются чаще категории: "возможность", "желательность", "адаптируемость", "здравый смысл", "рациональность" и другие. Методы также различны: для "жестких" систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для "мягких" систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.

Для "переноса" знаний широко используются инварианты систем и изоморфизм систем. Важно при таком переносе не нарушать свойство эмерджентности системы.

Вопросы для самоконтроля

  1. Как классифицируются системы?
  2. Какая система называется большой? сложной?
  3. Чем определяется вычислительная (структурная, динамическая) сложность системы? Приведите примеры таких систем.

Задачи и упражнения

  1. Привести пример одной-двух сложных систем, пояснить причины и тип сложности, взаимосвязь сложностей различного типа. Указать меры (приемы, процедуры) оценки сложности. Построить 3D-, 2D-, 1D-структуры сложных систем. Сделать рисунки, иллюстрирующие основные связи.
  2. Выбрав в качестве меры сложности некоторой экосистемы многообразие видов в ней, оценить сложность (многообразие) системы.
  3. Привести пример оценки сложности некоторого фрагмента литературного (музыкального, живописного) произведения.

Темы для научных исследований и рефератов, интернет-листов

  1. Классификационная система классов систем.
  2. Большая и сложная система - взаимопереходы и взаимозависимости.
  3. Единство и борьба различных типов сложностей.


5. Лекция: Система, информация, знания

Рассматриваются различные аспекты понятия "информация", типы и классы информации, методы и процедуры актуализации информации.

Цель лекции: введение в суть и значение основного, но плохо формализуемого (и поэтому определяемого обычно упрощенно, с учетом потребностей предметной области) понятия "информация" с точки зрения системного анализа.

Понятие информации - одно из основных, ключевых понятий не только в системном анализе, но и в информатике, математике, физике и др. В то же время, это понятие - плохо формализуемое, из-за его всеобщности, объемности, расплывчатости, и трактуется как:

        любая сущность, которая вызывает изменения в некоторой информационно-логической (инфологической - состоящей из сообщений, данных, знаний, абстракций, структурных схем и т.д.) модели, представляющей систему (математика, системный анализ);

        сообщения, полученные системой от внешнего мира в процессе адаптивного управления, приспособления (теория управления, кибернетика);

        отрицание энтропии, отражение меры хаоса в системе (термодинамика);

        связи и отношения, устраняющие неопределенность в системе (теория информации);

        вероятность выбора в системе (теория вероятностей);

        отражение и передача разнообразия в системе (физиология, биокибернетика);

        отражение материи, атрибут сознания, "интеллектуальности" системы (философия).

Мы будем рассматривать системное понимание этой категории, ничуть не отрицая приведенные выше понятия и, более того, используя их по мере надобности.

Процесс познания - это иерархическая система актуализации информации, в которой знания на каждом следующем уровне иерархии являются интегральным результатом актуализации знаний на предыдущем уровне. Это процесс интеграции информационных ресурсов, от получаемых с помощью простого чувственного восприятия и до сложных аксиоматических и абстрактных теорий.

Данные - синтаксические сигналы, образы, актуализируемые с помощью некоторого источника данных. Они рассматриваются безотносительно к семантическому их смыслу.

Информация - это некоторая последовательность сведений, знаний, которые актуализируемы (получаемы, передаваемы, преобразуемы, сжимаемы, регистрируемы) с помощью некоторых знаков символьного, образного, жестового, звукового, сенсомоторного типа.

Информация - это данные, рассматриваемые с учетом некоторой их семантической сущности.

Знания - информация, обеспечивающая достижение некоторой цели и структуры.

Информация с мировоззренческой точки зрения - отражение реального мира. Информация - приращение, развитие, актуализация знаний, возникающее в процессе целеполагающей интеллектуальной деятельности человека.

Никакая информация, никакое знание не появляется сразу: появлению их предшествует этап накопления, систематизации опытных данных, мнений, взглядов, их осмысление и переосмысление. Знание - продукт этого этапа и такого системного процесса.

Информация (в системе, о системе) по отношению к окружающей среде (окружению) бывает трех типов: входная, выходная и внутренняя.

Входная информация - та, которую система воспринимает от окружающей среды. Такого рода информация называется входной информацией (по отношению к системе).

Выходная информация (по отношению к окружающей среде) - та, которую система выдает в окружающую среду.

Внутренняя, внутрисистемная информация (по отношению к данной системе) - та, которая хранится, перерабатывается, используется только внутри системы, актуализируется лишь подсистемами системы.

Пример. Человек воспринимает, обрабатывает входную информацию, например, данные о погоде на улице, формирует выходную реакцию - ту или иную форму одежды. При этом используется внутренняя информация, например, генетически заложенная или приобретенная физиологическая информация о реакции, например, о "морозостойкости" человека.

Внутренние состояния системы и структура системы влияют определяющим образом на взаимоотношения системы с окружающей средой - внутрисистемная информация влияет на входную и выходную информацию, а также на изменение самой внутрисистемной информации.

Информация о работе Введение в анализ, синтез и моделирование систем