Трехмерная графика

Автор: Пользователь скрыл имя, 27 Марта 2013 в 10:31, реферат

Описание работы

Трёхмерная графика (3D (от англ. 3 Dimensions — рус. 3 измерения) Graphics, Три измерения изображения) — раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объёмных объектов.
Трёхмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако, с созданием и внедрением 3D-дисплеев и 3D-принтеров, трёхмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).

Содержание

• 1 Применение
• 2 Создание
o 2.1 Моделирование
o 2.2 Текстурирование
o 2.3 Освещение
o 2.4 Анимация
o 2.5 Рендеринг
• 3 Программное обеспечение
o 3.1 3D-моделирование фотореалистичных изображений
 3.1.1 SketchUp
o 3.2 Визуализация трёхмерной графики в играх и прикладных программах
o 3.3 Моделирование деталей и механизмов для производства
• 4 Трёхмерные дисплеи
o 4.1 Стереоскопические дисплеи
o 4.2 Наголовные дисплеи, видеоочки
o 4.3 Прочие дисплеи
• 5 Кинотеатры с 3D
• 6 Дополненная реальность и 3D
• 7 См. также
• 8 Примечания
• 9 Литература

Работа содержит 1 файл

Трёхмерная графика.docx

— 239.40 Кб (Скачать)

Трёхмерная графика


[править]

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 июня 2012; проверки требуют 33 правки.

Пример 3D-графики

Трёхмерная графика (3D (от англ. 3 Dimensions — рус. 3 измерения) Graphics, Три измерения изображения) — разделкомпьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объёмных объектов.

Трёхмерное изображение на плоскости  отличается от двумерного тем, что включает построение геометрической проекциитрёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако, с созданием и внедрением 3D-дисплеев и 3D-принтеров, трёхмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).

Содержание  

[убрать] 

  • 1 Применение
  • 2 Создание
    • 2.1 Моделирование
    • 2.2 Текстурирование
    • 2.3 Освещение
    • 2.4 Анимация
    • 2.5 Рендеринг
  • 3 Программное обеспечение
    • 3.1 3D-моделирование фотореалистичных изображений
      • 3.1.1 SketchUp
    • 3.2 Визуализация трёхмерной графики в играх и прикладных программах
    • 3.3 Моделирование деталей и механизмов для производства
  • 4 Трёхмерные дисплеи
    • 4.1 Стереоскопические дисплеи
    • 4.2 Наголовные дисплеи, видеоочки
    • 4.3 Прочие дисплеи
  • 5 Кинотеатры с 3D
  • 6 Дополненная реальность и 3D
  • 7 См. также
  • 8 Примечания
  • 9 Литература

[править]Применение

Трёхмерная графика активно  применяется для создания изображений  на плоскости экрана или листа  печатной продукции в науке и промышленности, например в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология»), в современных системах медицинской визуализации. 
Самое широкое применение — во многих современных компьютерных играх. 
Также как элемент кинематографа, телевидения, печатной продукции.

Трёхмерная графика обычно имеет  дело с виртуальным, воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трехмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трехмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи[1]. Однако и 3D-дисплеи по-прежнему не позволяют создавать полноценной физической, осязаемой копии математической модели, создаваемой методами трехмерной графики. Развивающиеся с 1990-х годов технологии быстрого прототипирования ликвидируют этот пробел. Следует заметить, что в технологиях быстрого прототипирования используется представление математической модели объекта в виде твердого тела (воксельная модель).

[править]Создание


Для получения трёхмерного изображения  на плоскости требуются следующие  шаги:

  • Моделирование — создание трёхмерной математической модели сцены и объектов в ней;
  • Текстурирование — назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов — прозрачность, отражения, шероховатость и пр.);
  • Освещение — установка и настройка источников света;
  • Анимация (в некоторых случаях) — придание движения объектам;
  • Динамическая симуляция (в некоторых случаях) — автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации, ветра,выталкивания и др., а также друг с другом;
  • Рендеринг (визуализация) — построение проекции в соответствии с выбранной физической моделью;
  • вывод полученного изображения на устройство вывода — дисплей или принтер.

[править]Моделирование

Схема проецирования сцены на экран  компьютера

Моделирование сцены (виртуального пространства моделирования) включает в себя несколько категорий объектов:

  • Геометрия (построенная с помощью различных техник (напр., создание полигональной сетки) модель, например здание);
  • Материалы (информация о визуальных свойствах модели, например цвет стен и отражающая/преломляющая способность окон);
  • Источники света (настройки направления, мощности, спектра освещения);
  • Виртуальные камеры (выбор точки и угла построения проекции);
  • Силы и воздействия (настройки динамических искажений объектов, применяется в основном в анимации);
  • Дополнительные эффекты (объекты, имитирующие атмосферные явления: свет в тумане, облака, пламя и пр.)

Задача трёхмерного моделирования — описать эти объекты и разместить их в сцене с помощью геометрических преобразований в соответствии с требованиями к будущему изображению.

Назначение материалов: для сенсора реальной фотокамеры материалы объектов реального мира отличаются по признаку того, как они отражают, пропускают и рассеивают свет; виртуальным материалам задается соответствие свойств реальных материалов — прозрачность, отражения, рассеивания света, шероховатость, рельеф и пр.

Наиболее популярными пакетами сугубо для моделирования являются:

  • Pixologic Zbrush;
  • Autodesk Mudbox;
  • Robert McNeel & Assoc. Rhinoceros 3D;
  • Google SketchUp.

Для создания трехмерной модели человека или существа может быть использована, как прообраз (в большинстве случаев) Скульптура.

[править]Текстурирование

Текстурирование подразумевает проецирование растровых или процедурных текстур на поверхности трехмерного объекта в соответствии с картой UV-координат, где каждой вершине объекта ставится в соответствие определенная координата на двухмерном пространстве текстуры.

Как правило, многофункциональные  редакторы UV-координат входят в состав универсальных пакетов трехмерной графики. Существуют также автономные и подключаемые редакторы от независимых  разработчиков, например Unfold3D magic, Deep UV, Unwrella и др.

[править]Освещение

Заключается в создании, направлении  и настройке виртуальных источников света. При этом, в виртуальном  мире источники света могут иметь  негативную интенсивность, отбирая  свет из зоны своего "отрицательного освещения". Как правило, пакеты 3D графики предоставляют следующие  типы источников освещения:

  • Omni light (Point light) — всенаправленный;
  • Spot light — конический (прожектор), источник расходящихся лучей;
  • Directional light — источник параллельных лучей;
  • Area light (Plane light) — световой портал, излучающий свет из плоскости;
  • Photometric — источники света, моделируемые по параметрам яркости свечения в физически измеримых единицах, с заданной температурой накала.

Существуют также другие типы источников света, отличающиеся по своему функциональному  предназначению в разных программах трехмерной графики и визуализации. некоторые пакеты предоставляют возможности создавать источники объемного свечения (Sphere light) или объемного освещения (Volume light), в пределах строго заданного объёма. Некоторые предоставляют возможность использовать геометрические объекты произвольной формы.

[править]Анимация

Одно из главных призваний трехмерной графики — придание движения (анимация) трехмерной модели, либо имитация движения среди трехмерных объектов. Универсальные пакеты трехмерной графики обладают весьма богатыми возможностями по созданию анимации. Существуют также узкоспециализированные программы, созданные сугубо для анимации и обладающие очень ограниченным набором инструментов моделирования:

  • Autodesk MotionBuilder
  • PMG Messiah Studio

[править]Рендеринг

Основная статья: Рендеринг

На этом этапе математическая (векторная) пространственная модель превращается в плоскую (растровую) картинку. Если требуется создать фильм, то рендерится последовательность таких картинок — кадров. Как структура данных, изображение на экране представлено матрицей точек, где каждая точка определена по крайней мере тремя числами: интенсивностью красного, синего и зелёного цвета. Таким образом рендеринг преобразует трёхмерную векторную структуру данных в плоскую матрицу пикселов. Этот шаг часто требует очень сложных вычислений, особенно если требуется создать иллюзию реальности. Самый простой вид рендеринга — это построить контуры моделей на экране компьютера с помощью проекции, как показано выше. Обычно этого недостаточно и нужно создать иллюзию материалов, из которых изготовлены объекты, а также рассчитать искажения этих объектов за счёт прозрачных сред (например, жидкости в стакане).

Существует несколько технологий рендеринга, часто комбинируемых вместе. Например:

  • Z-буфер (используется в OpenGL и DirectX 10);
  • Сканлайн (scanline) — он же Ray casting («бросание луча», упрощенный алгоритм обратной трассировки лучей) — расчёт цвета каждой точки картинки построением луча из точки зрения наблюдателя через воображаемое отверстие в экране на месте этого пиксела «в сцену» до пересечения с первой поверхностью. Цвет пиксела будет таким же, как цвет этой поверхности (иногда с учётом освещения и т. д.);
  • Трассировка лучей (рейтрейсинг, англ. raytracing) — то же, что и сканлайн, но цвет пиксела уточняется за счёт построения дополнительных лучей (отражённых, преломлённых и т. д.) от точки пересечения луча взгляда. Несмотря на название, применяется только обратная трассировка лучей (то есть как раз от наблюдателя к источнику света), прямая крайне неэффективна и потребляет слишком много ресурсов для получения качественной картинки;
  • Глобальное освещение (англ. global illumination, radiosity) — расчёт взаимодействия поверхностей и сред в видимом спектре излучения с помощью интегральных уравнений.

Грань между алгоритмами трассировки  лучей в настоящее время практически  стёрлась. Так, в 3D Studio Max стандартный визуализатор называется Default scanline renderer, но он считает не только вклад диффузного, отражённого и собственного (цвета самосвечения) света, но и сглаженные тени. По этой причине, чаще понятие Raycasting относится к обратной трассировке лучей, а Raytracing — к прямой.

Наиболее популярными системами  рендеринга являются:

  • PhotoRealistic RenderMan (PRMan)
  • mental ray
  • V-Ray
  • FinalRender
  • Brazil R/S
  • BusyRay
  • Turtle
  • Maxwell Render
  • Fryrender
  • Indigo Renderer
  • LuxRender
  • YafaRay
  • POV-Ray

Вследствие большого объёма однотипных вычислений рендеринг можно разбивать на потоки (распараллеливать). Поэтому для рендеринга весьма актуально использованиемногопроцессорных систем. В последнее время активно ведётся разработка систем рендеринга использующих GPU вместо CPU, и уже сегодня их эффективность для таких вычислений намного выше. К таким системам относятся:

  • Refractive Software Octane Render
  • AAA studio FurryBall
  • RandomControl ARION (гибридная)

Многие производители систем рендеринга для CPU также планируют ввести поддержку GPU (LuxRender, YafaRay, mental images iray).

Самые передовые достижения и идеи трёхмерной графики (и компьютерной графики вообще) докладываются и  обсуждаются на ежегодном симпозиуме SIGGRAPH, традиционно проводимом в США.

[править]Программное обеспечение


[править]3D-моделирование фотореалистичных изображений

Программные пакеты, позволяющие создавать трёхмерную графику, то есть моделировать объекты виртуальной реальности и создавать на основе этих моделей изображения, очень разнообразны. Последние годы устойчивыми лидерами в этой области являются коммерческие продукты, такие как:

  • Autodesk 3ds Max
  • Autodesk Maya
  • Autodesk Softimage
  • Cinema 4D
  • Houdini
  • Modo
  • LightWave 3D
  • Caligari Truespace

Информация о работе Трехмерная графика