Автор: Пользователь скрыл имя, 16 Марта 2012 в 02:09, лекция
Сетевая модель OSI (англ. open systems interconnection basic reference model — базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС; 1978 г.) — абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Предлагает взгляд на компьютерную сеть с точки зрения измерений. Каждое измерение обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее.
Сетевые концепции и интерфейсы. Основные форматы данных.
Сетевая модель OSI (англ. open systems interconnection basic reference model — базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС; 1978 г.) — абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Предлагает взгляд на компьютерную сеть с точки зрения измерений. Каждое измерение обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее.
В настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.
Уровни модели OSI
Модель OSI | ||
Тип данных |
Уровень (layer) |
Функции |
Данные |
7. Прикладной (application) |
Доступ к сетевым службам |
6. Представления (presentation) |
Представление и кодирование данных | |
5. Сеансовый (session) |
Управление сеансом связи | |
Сегменты |
4. Транспортный (transport) |
Прямая связь между конечными пунктами и надежность |
Пакеты |
3. Сетевой (network) |
Определение маршрута и логическая адресация |
Кадры |
2. Канальный (data link) |
Физическая адресация |
Биты |
1. Физический (physical) |
Работа со средой передачи, сигналами и двоичными данными |
В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем — физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:
Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже — вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.
Каждому уровню с некоторой долей условности соответствует свой операнд — логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица — бит, на канальном уровне информация объединена в кадры, на сетевом — в пакеты (датаграммы), на транспортном — в сегменты. Любой фрагмент данных, логически объединённых для передачи — кадр, пакет, датаграмма — считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.
К базовым сетевым технологиям относятся физический и канальный уровни.
Прикладной уровень
Прикладной уровень (уровень приложений; англ. application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:
Протоколы прикладного уровня: RDP, HTTP,
Представительский уровень
Представительский уровень
(уровень представления; англ.
Уровень представлений обычно
представляет собой промежуточный
протокол для преобразования информации
из соседних уровней. Это позволяет
осуществлять обмен между приложениями
на разнородных компьютерных системах
прозрачным для приложений образом.
Уровень представлений
Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.
Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может быть мейнфрейм компании IBM, а другая — американский стандартный код обмена информацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.
Другой функцией, выполняемой
на уровне представлений, является шифрование
данных, которое применяется в
тех случаях, когда необходимо защитить
передаваемую информацию от приема несанкционированными
получателями. Чтобы решить эту задачу,
процессы и коды, находящиеся на
уровне представлений, должны выполнить
преобразование данных. На этом уровне
существуют и другие подпрограммы,
которые сжимают тексты и преобразовывают
графические изображения в
Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT — формат изображений, применяемый для передачи графики QuickDraw между программами.
Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.
Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital Interface, MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, иQuickTime — стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.
Протоколы уровня представления: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.
Сеансовый уровень
Сеансовый уровень (англ. session layer) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.
Протоколы сеансового уровня: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Secure Copy Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol).
Транспортный уровень
Транспортный уровень (англ. transport layer) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы, и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.
Протоколы транспортного уровня: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).
Сетевой уровень
Сетевой уровень (англ. network layer) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.
Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).
Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security), ICMP (Internet Control Message Protocol), RIP (Routing Information Protocol), OSPF (Open Shortest Path First), ARP (Address Resolution Protocol).
Канальный уровень
Канальный уровень (англ. data link layer) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает в кадры, проверяет на целостность, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.
Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (англ. media access control) регулирует доступ к разделяемой физической среде, LLC (англ. logical link control) обеспечивает обслуживание сетевого уровня.
На этом уровне работают концентраторы, коммут
Протоколы канального уровня: ARCnet, ATM, Cisco
Discovery Protocol (CDP), Controller Area Network (CAN), Econet, Etherne
В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS, UDI.
Физический уровень
Физический уровень (англ. physical layer) — нижний уровень модели, предназначенный непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.
На этом уровне также работают повторители сиг
Функции физического уровня
реализуются на всех устройствах, подключенных
к сети. Со стороны компьютера функции
физического уровня выполняются
сетевым адаптером или
Информация о работе Сетевые концепции и интерфейсы. Основные форматы данных