Автор: Пользователь скрыл имя, 06 Мая 2013 в 18:29, реферат
Эру создания компьютерной символьной математики принято отсчитывать с начала 60-х годов. Именно тогда в вычислительной технике возникла новая ветвь компьютерной математики, не совсем точно, но зато броско названная компьютерной алгеброй. Речь шла о возможности создания компьютерных систем, способных осуществлять типовые алгебраические преобразования: подстановки в выражениях, упрощение выражений, операции со степенными многочленами (полиномами), решение линейных и нелинейных уравнений и их систем, вычисление их корней и т. д.
ВВЕДЕНИЕ ………………………………………………………………………….3
Глава 1 Основные объекты и функции системы MAPLE ………………………..4
1.Основные объекты и системы…………………………………………………..4
2.Переменные, неизвестные и выражения……………………………………….5
3.Функции системы MAPLE …… ……………………………………………….7
Глава 2 Решение задач линейной алгебры с использованием MAPLE ………….9
2.1 Векторная алгебра……………………………………………………………….9
2.2 Действия с матрицами………………………………………………………….11
2.3 Спектральный анализ матрицы………………………………………………..16
2.4 Системы линейных уравнений и матричные уравнения…………………….19
2.5 Решение обыкновенных уравнений…………………………………………...21
2.6 Решение неравенств……………………………………………………………22
ЗАКЛЮЧЕНИЕ …………………………………………………………………….24
ЛИТЕРАТУРА……………………………………………………………………...25
Привести матрицу А к Жордановой форме, треугольному виду, найти ее характеристическую матрицу.
> A:=matrix([[1,-3,4],[4,-7,8]
> j:=jordan(A);
> g:=gausselim(A);
> F(A):=charmat(A,lambda);
2.4 Системы линейных уравнений и матричные уравнения.
Система линейных уравнений может быть решена двумя способами.
Способ 1: стандартная команда solve находит решение системы линейных уравнений, записанных в развернутом виде:
.
Способ 2: команда linsolve(A,b) из пакета linalg находит решение уравнения . Аргументы этой команды: А – матрица, b – вектор.
С помощью команды linsolve(A,b)
Ядро матрицы.
Ядро матрицы А – это множество векторов х таких, произведение матрицы А на которые равно нулевому вектору: . Поиск ядра матрицы А эквивалентен решению системы линейных однородных уравнений. Найти ядро матрицы А можно командой kernel(A).
Задание .
> eq:={2*x-3*y+5*z+7*t=1, 4*x-6*y+2*z+3*t=2,
2*x-3*y-11*z-15*t=1}:
> s:=solve(eq,{x,y,z});
s:={ , y=y, }
Для нахождения частного решения следует выполнить подстановку конкретного значения одной из переменных при помощи команды subs:
> subs({y=1,t=1},s);
{ , , 1=1}
> A:=matrix([[1,2],[3,4]]):
> B:=matrix([[3,5],[5,9]]):
> X:=linsolve(A,B);
Найти ее ранг, дефект: d(A)=n–r(A), где n – размерность квадратной матрицы, r – ее ранг. Найти ядро А. Наберите:
> A:=matrix([[1,1,0],[0,2,-1],
> r(A):=rank(A);
r(A):=2
> d(A):=rowdim(A)-r(A);
d(A):=1
> k(A):=kernel(A);
k(A):={[- 1,1,2]}
2.5 Решение обыкновенных уравнений.
Для решения уравнений в Maple существует универсальная команда solve(eq,x), где eq – уравнение, x – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появится выражение, которое является решением данного уравнения. Например:
> solve(a*x+b=c,x);
Если уравнение имеет несколько решений, которые вам понадобятся для дальнейших расчетов, то команде solve следует присвоить какое-нибудь имя name. Обращение к какому-либо k–ому решению данного уравнения производится указанием его имени с номером решения k в квадратных скобках: name[k]. Например:
> x:=solve(x^2-a=0,x);
> x[1];
> x[2];
> x[1]+x[2];
0
Решение систем уравнений.
Системы уравнений решаются
с помощью такой же команды solve({eq1,eq2,…},{x1,
> s:=solve({a*x-y=1,5*x+a*y=1}
s:={ }
> assign(s); simplify(x-y);
2.6 Решение неравенств
Решение простых неравенств.
Команда solve применяется также для решения неравенств. Решение неравенства выдается в виде интервала изменения искомой переменной. В том случае, если решение неравенства полуось, то в поле вывода появляется конструкция вида RealRange(–¥ , Open(a)), которая означает, что xÎ (–¥ , a), а – некоторое число. Слово Open означает, что интервал с открытой границей. Если этого слова нет, то соответствующая граница интервала включена во множество решений. Например:
> s:=solve(sqrt(x+3)<sqrt(x-1)+
> convert(s,radical);
RealRange
Если вы хотите получить решение неравенства не в виде интервального множества типа xÎ (a, b), а в виде ограничений для искомой переменной типа a<x, x< b, то переменную, относительно которой следует разрешить неравенство, следует указывать в фигурных скобках. Например:
> solve(1-1/2*ln(x)>2,{x});
Решение систем неравенств.
С помощью команды solve можно также решить систему неравенств. Например:
> solve({x+y>=2,x-2*y<=1,x-y>=0,
Задание.
Наберите:
> solve(13*x^3-25*x^2-x^4-129*x+
RealRange(Open(-3), Open(2)), RealRange(Open(5), Open(9))
Запишите этот результат в аналитическом виде. Получите решение этого неравенства в виде ограничений для искомой переменной. Проделайте это самостоятельно.
Наберите:
> solve(exp(2*x+3)<1,x);
RealRange
ЗАКЛЮЧЕНИЕ
Многофункциональный пакет Maple представляет собой один из наиболее мощных математических пакетов. Его возможности охватывают достаточно много разделов математики и могут с пользой применяться на разных уровнях, начиная от обучения старшеклассников до уровня серьезных научных исследований. Maple - система аналитических вычислений для математического моделирования.
Методика решения некоторых задач линейной алгебры с помощью пакета Maple позволила значительно повысить эффективность процесса обучения. Путем наглядного представления материала сложные математические формулы и преобразования становятся гораздо проще, и процесс усвоения материала проходит намного эффективнее.
Возможности Maple не ограничиваются решением задач математики. Используя навыки, полученные при изучении курса математики можно самостоятельно изучать такие дисциплины как: геометрия, тригонометрия, статистика, а также таких прикладных дисциплин как физика и астрономия.
Возможности пакета Maple, как средства обучения, весьма обширны и его использование является перспективным направлением в современном обучении.
ЛИТЕРАТУРА
Информация о работе Решение задач линейной алгебры в системе MAPLE