Основы организации операционных систем

Автор: Пользователь скрыл имя, 24 Марта 2013 в 11:42, курс лекций

Описание работы

Первые шаги по созданию электронных вычислительных машин были предприняты в конце второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства, и появился принцип программы, хранимой в памяти машины (John Von Neumann, июнь 1945г). В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не регулярное использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке.

Работа содержит 1 файл

Konspekt_lektsy_tekuschy_variant.doc

— 825.50 Кб (Скачать)

В дальнейшем тексте этой части книги  для простоты изложения мы будем  использовать термин “процесс”, хотя все сказанное будет относиться и к нитям исполнения.

6.5. Резюме

Для достижения поставленной цели различные  процессы могут исполняться псевдопараллельно на одной вычислительной системе или параллельно на разных вычислительных системах, взаимодействуя между собой. Причинами для совместной деятельности процессов обычно являются: необходимость ускорения решения задачи, совместное использование обновляемых данных, удобство работы или модульный принцип построения программных комплексов. Процессы, которые влияют на поведение друг друга путем обмена информацией, называют кооперативными или взаимодействующими процессами, в отличие от независимых процессов, не оказывающих друг на друга никакого воздействия и ничего не знающих о взаимном сосуществовании в вычислительной системе.

Для обеспечения корректного обмена информацией операционная система должна предоставить процессам специальные средства связи. По объему передаваемой информации и степени возможного воздействия на поведение процесса, получившего информацию, их можно разделить на три категории: сигнальные, канальные и разделяемую память. Через канальные средства коммуникации информация может передаваться в виде потока данных или в виде сообщений и накапливаться в буфере определенного размера. Для инициализации общения процессов и его прекращения могут потребоваться специальные действия со стороны операционной системы. Процессы, связываясь друг с другом, могут использовать непрямую, прямую симметричную и прямую асимметричную схемы адресации. Существуют одно- и двунаправленные средства передачи информации. Средства коммуникации обеспечивают надежную связь, если при общении процессов не происходит потери информации, не происходит повреждения информации, не появляется лишней информации, не нарушается порядок данных.

Усилия, направленные на ускорение  решения задач в рамках классических операционных систем, привели к появлению новой абстракции внутри понятия “процесс” - нити исполнения или просто нити. Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет свой собственный программный счетчик, свое содержимое регистров и свой собственный стек. Теперь процесс представляется как совокупность взаимодействующих нитей и выделенных ему ресурсов. Нити могут порождать новые нити внутри своего процесса, они имеют состояния, аналогичные состояниям процесса, и могут переводиться операционной системой из одного состояния в другое. В системах, поддерживающих нити на уровне ядра, планирование использования процессора осуществляется в терминах нитей исполнения, а управление остальными системными ресурсами в терминах процессов. Накладные расходы на создание новой нити и на переключение контекста между нитями одного процесса существенно меньше, чем на те же самые действия для процессов, что позволяет на однопроцессорной вычислительной системе ускорять решение задач с помощью организации работы нескольких взаимодействующих нитей.

 

Глава 7 (лекция 10)

Управление  вводом-выводом

 

Функционирование любой вычислительной системы обычно сводится к выполнению двух видов работы: обработке информации и операций по осуществлению ее ввода-вывода.

Содержание понятий "обработка  информации" и "операции ввода-вывода" зависит от того, с какой точки  зрения мы смотрим на них. С точки  зрения программиста, под "обработкой информации" понимается выполнение команд процессора над данными, лежащими в памяти независимо от уровня иерархии – в регистрах, кэше, оперативной или вторичной памяти. Под "операциями ввода-вывода" программист понимает обмен данными между памятью и устройствами, внешними по отношению к памяти и процессору, такими как магнитные ленты, диски, монитор, клавиатура, таймер. С точки зрения операционной системы "обработкой информации" являются только операции, совершаемые процессором над данными, находящимися в памяти на уровне иерархии не ниже, чем оперативная память. Все остальное относится к "операциям ввода-вывода". Чтобы выполнять операции над данными, временно расположенными во вторичной памяти, операционная система, сначала производит их подкачку в оперативную память, и лишь затем процессор совершает необходимые действия.

Данная лекция будет посвящена  второму виду работы вычислительной системы – операциям ввода-вывода. Мы разберем, что происходит в компьютере при выполнении операций ввода-вывода, и как операционная система управляет  их выполнением. При этом для простоты будем считать, что объем оперативной памяти в вычислительной системе достаточно большой, т. е. все процессы полностью располагаются в оперативной памяти, и поэтому понятие "операция ввода-вывода" с точки зрения операционной системы и с точки зрения пользователя означает одно и то же. Такое предположение не снижает общности нашего рассмотрения, так как подкачка информации из вторичной памяти в оперативную память и обратно обычно строится по тому же принципу, что и все операции ввода-вывода.

Прежде чем говорить о работе операционной системы при осуществлении  операций ввода-вывода, нам придется вспомнить некоторые сведения из  архитектуры современных ЭВМ, чтобы понять, как осуществляется передача информации между оперативной памятью и внешним устройством и почему для подключения к вычислительной системе новых устройств ее не требуется перепроектировать.

Физические принципы организации ввода-вывода. Существует много разнообразных устройств, которые могут взаимодействовать с процессором и памятью: таймер, жесткие диски, клавиатура, дисплеи, мышь, модемы и т. д., вплоть до устройств отображения и ввода информации в авиационно-космических тренажерах. Часть этих устройств может быть встроена внутрь корпуса компьютера, часть – вынесена за его пределы и общаться с компьютером через различные линии связи: кабельные, оптоволоконные, радиорелейные, спутниковые и т. д. Конкретный набор устройств и способы их подключения определяются целями функционирования вычислительной системы, желаниями и финансовыми возможностями пользователя. Несмотря на все многообразие устройств, управление их работой и обмен информацией с ними строятся на относительно небольшом наборе принципов, которые мы постараемся разобрать в этом разделе.

7.1 Общие сведения об  архитектуре компьютера. 

В простейшем случае процессор, память и многочисленные внешние устройства связаны большим количеством  электрических соединений – линий, которые в совокупности принято  называть локальной магистралью  компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себя не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют как минимум три шины:

  • шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами;
  • адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией;
  • шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии со<span class="dash0410_0431_0437_0430_0446_0020_04

Информация о работе Основы организации операционных систем