Автор: Пользователь скрыл имя, 22 Декабря 2011 в 00:26, курсовая работа
Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного назначения как в аналоговой, так и в цифровой технике.
Наименование «операционный усилитель» обусловлено тем, что, прежде всего такие усилители получили применение для выполнения операций суммирования сигналов, их дифференцирования, интегрирования, инвертирования и т. д.
Введение……………………………………………………………………………………..5
1. Операционные усилители
1.1.Общие сведения…………………………………………………………………………6
1.2. Идеальный операционный усилитель………………………………………………...8
1.3. Основные схемы включения операционного усилителя…………………………...9
Дифференциальное включение ……………………………………………….9
Инвертирующее включение ………………………………………………….10
Неинвертирующее включение ……………………………………………….11
1.4. Внутренняя структура операционных усилителей ………………………………..11
1.5. Стандартная схема операционного усилителя …………………………………….14
1.6. Схема замещения операционного усилителя ………………………………………16
Входное сопротивление схемы ……………………………………………….17
Выходное сопротивление схемы ……………………………………………..17
1.7. Коррекция частотной характеристики ………………………………………………17
Полная частотная коррекция ………………………………………………….20
Подстраиваемая частотная коррекция ………………………………………..21
Скорость нарастания …………………………………………………………...23
Компенсация емкостной нагрузки …………………………………………….23
1.8. Параметры операционных усилителей ………………………………………………24
Динамические параметры ОУ ………………………………………………….27
1.9. Типы операционных усилителей ……………………………………………………..27
Rвх= rд(1+KU)||rвх
Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 109 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.
Рис.
12. Схема неинвертирующего
усилителя с учетом
собственных сопротивлений
ОУ
Выходное сопротивление схемы
Реальные операционные усилители довольно далеки от идеала в отношении выходного сопротивления. Так, рассмотренный выше ОУ типа А741 имеет rвых порядка 1 кОм. Оно, правда, в значительной степени уменьшается применением отрицательной обратной связи по напряжению. Снижение выходного напряжения схемы, вызванное падением напряжения на rвых при подключении нагрузки, передается на n-вход усилителя через делитель напряжения R1, R2. Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.
Выходное
сопротивление операционного
Для усилителя, охваченного обратной связью, в соответствии со схемой на рис. 12, эта формула принимает вид:
|
При работе усилителя, охваченного обратной связью, величина Uд не остается постоянной, а изменяется на величину
dUд= - dUn = -dUвых (13)
Для
усилителя с линейной передаточной
характеристикой изменение
dUвых=KUdUд - rвых dIвых
Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dUд из (13) с учетом (12), получим искомый результат:
Если, например,
В =0,1, что соответствует усилению
входного сигнала в 10 раз, а KU=105 , то
выходное сопротивление усилителя
А741 снизится с 1 кОм до 0,1 Ом. Вышеизложенное,
вообще говоря, справедливо в пределах
полосы пропускания усилителя fп, которая
для А741 составляет всего только 10 Гц. На
более высоких частотах выходное сопротивление
ОУ с обратной связью будет увеличиваться,
т.к. величина |KU| с ростом частоты будет
уменьшаться со скоростью 20дБ на декаду
(см. рис. 3). При этом оно приобретает индуктивный
характер и на частотах более fт становится
равным величине выходного сопротивления
усилителя без обратной связи.
1.7. Коррекция частотной характеристики
Вследствие наличия паразитных емкостей и многокаскадной структуры операционный усилитель по своим частотным свойствам аналогичен фильтру нижних частот высокого порядка. Системы такого рода, имеющие большой коэффициент усиления, при наличии обратной связи склонны к неустойчивости, проявляющейся в том, что даже при отсутствии сигнала на входе системы, на ее выходе существуют колебания относительно большой амплитуды. Устойчивость ОУ с обратной связью удобно исследовать по его частотным характеристикам. Типичные логарифмические асимптотическая амплитудно-частотная (ЛАЧХ) и фазово-частотная (ЛФЧХ) характеристики (диаграмма Боде) ОУ без частотной коррекции приведены на рис. 13.
Рис. 13. Типичные логарифмические амплитудно-частотная и фазово-частотная характеристики ОУ
Выше частоты f1 частотная характеристика определяется инерционным звеном с максимальной постоянной времени. Коэффициент усиления в этой области убывает со скоростью -20 дБ/дек. Выше частоты f2 начинает действовать второе инерционное звено, коэффициент усиления убывает быстрее (-40 дБ/дек), а фазовый сдвиг между Uд и Uвых достигает -180°. Частота, при которой выполняется это условие, называется критической fкр. Частота, при которой модуль коэффициента усиления петли обратной связи (коэффициента петлевого усиления) |Kп| = |KU|=1, называется частотой среза fср. Коэффициент в этом соотношении является коэффициентом передачи цепи обратной связи. Как для инвертирующего, так и для неинвертирующего включения ОУ при резистивной обратной связи он определяется как
K = R1/(R1+R2)
Согласно выражениям (8), (9), между и коэффициентом усиления входного сигнала схемы на ОУ K существует следующая взаимосвязь:
для инвертирующего
включения
для неинвертирующего включения. |
(14) |
В соответствии с логарифмическим вариантом критерия Найквиста для минимально-фазовых систем, к которым можно отнести ОУ с отрицательной обратной связью, усилитель будет устойчив, если для логарифмических частотных характеристик разомкнутой петли обратной связи KU выполнено условие:
fср< fкр (15)
При резистивной обратной связи ЛФЧХ петли совпадает с ЛФЧХ усилителя, а ЛАЧХ петли проходит на 20lgниже ЛАЧХ усилителя, так что частота среза fср соответствует точке пересечения графика ЛАЧХ усилителя с горизонтальной прямой, проведенной на 20lgвыше оси частот. На диаграмме рис. 13 видно, что при больших значениях K (и, соответственно, малых ) условие (15) выполняется, причем имеется достаточный запас устойчивости по фазе. При K<200 операционный усилитель с частотными характеристиками, такими, как на рис. 13, неустойчив.
Степень устойчивости, а также мера затухания переходных процессов приближенно определяется запасом устойчивости по фазе. Под этой величиной понимается дополнительный до 180° угол к фазовому запаздыванию на критической частоте:
K =180° + (fкр)
На рис. 14 представлены типичные графики переходных функций (реакций на единичный скачек) операционного усилителя, включенного по схеме неинвертирующего повторителя при различных запасах устойчивости по фазе .
Рис.
14. Переходные характеристики
ОУ, охваченного обратной
связью
Полная частотная коррекция
Если операционный усилитель разрабатывается для универсального применения, то фазовый сдвиг его при |KU| >1 должен быть по абсолютной величине меньше 120°. При этом для любого коэффициента обратной связи 0<K<1 запас по фазе будет составлять не менее 60°. Это требование выполняется коррекцией частотной характеристики, причем коррекция производится так, чтобы при |KU|>1 она была аналогична характеристике фильтра нижних частот первого порядка (т.е. имела бы вид рис. 2). Так как нежелательные инерционные звенья с частотами среза f2 и f3, как это показано на рис. 13, не могут быть устранены из схемы усилителя, то необходимо путем выбора конденсатора коррекции Ск (см. рис. 10) так уменьшить частоту среза f1 основного инерционного звена, чтобы условие |KU| <1 было бы выполнено до того, как начнется существенное влияние второго инерционного звена.
На рис. 15 представлен этот вариант коррекции. Очевидно, что при таком соотношении параметров даже для самого неблагоприятного с точки зрения устойчивости случая обратной связи, как K=1, еще имеется достаточный запас по фазе =65°, а при меньших значениях он практически равен 90°. Можно отметить также, что из-за наличия частотной коррекции полоса пропускания разомкнутого ОУ существенно сужается. Частотная коррекция усилителя на нижних частотах увеличивает его фазовый сдвиг на 90°, а на более высоких частотах практически на него не влияет. Для многих универсальных ОУ достаточна емкость корректирующего конденсатора Ск = 30 пФ. У усилителей с полной внутренней коррекцией, таких как, например, 140УД6, 140УД7, 140УД17 и др., корректирующий конденсатор изготавливается методами интегральной технологии.
Рис.
15. Логарифмические
частотные характеристики
ОУ с полной частотной
коррекцией и без
нее
Подстраиваемая частотная коррекция
Полная
частотная коррекция
Смысл этого соотношения наглядно пояснен на рис. 16. При менее глубокой обратной связи для стабилизации усилителя достаточно было бы меньшего снижения усиления в области средних и высоких частот, так как в этом случае точка |KU| = 1 достигается при |KU| >1. Как видно из рис. 16, ширину полосы пропускания ОУ без обратной связи можно увеличить с 10 Гц до 100 Гц уменьшением Ск от 30 пФ до 3 пФ. При этом полоса пропускания усилителя с обратной связью возрастет со 100 кГц до 1 МГц.
Рис. 16. Зависимость полосы пропускания от коэффициента усиления при подстраиваемой частотной коррекции
Для того, чтобы можно было осуществить такие изменения частотной коррекции, выпускаются операционные усилители, у которых отсутствует корректирующий конденсатор, а вместо него выведены соответствующие точки схемы (например, 153УД6, 140УД14). В других вариантах, например, в усилителях 544УД2, осуществляется неполная частотная коррекция с уменьшенным значением корректирующей емкости. Для подключения дополнительного конденсатора (чтобы обеспечить устойчивость при значениях b, близких к единице) также имеются соответствующие выводы. В паспортных данных некоторых типов ОУ указываются минимальные значения коэффициентов усиления ОУ в неинвертирующем включении, при которых усилитель сохраняет устойчивость. Например, для ОУ AD840K это значение составляет 10, для ОРА605К - 50 и т.д. Изготавливаются усилители с одинаковой схемотехникой, одни из которых имеют встроенный корректирующий конденсатор, а другие - без такого конденсатора. Например, некоторые фирмы выпускают ОУ типа ОР-27 и ОР-37 (отечественные аналоги, соответственно, 140УД25 и 140УД26). Первый из них имеет встроенный корректирующий конденсатор, частоту единичного усиления fт = 8 МГц, максимальную скорость нарастания - 2,8 В/мкс, и работает устойчиво вплоть до 100%-ной обратной связи. ОУ типа ОР-37 не имеет корректирующего конденсатора. Его частота единичного усиления fт = 60 МГц, скорость нарастания - 17 В/мкс. Он работает устойчиво при коэффициентах усиления входного сигнала более пяти.
В
комплексе мероприятий по обеспечению
устойчивости схемы с операционным
усилителем (особенно быстродействующим)
важное место занимает его правильный
монтаж. Проводники, соединяющие резисторы
обратной связи с инвертирующим входом
усилителя, должны иметь минимальную длину.
При невыполнении этого правила на входе
ОУ образуется паразитная емкость, которая
при наличии плоскостей заземления может
составлять 0,4 пФ на миллиметр проводника.
Эта емкость совместно с резисторами обратной
связи образует дополнительное инерционное
звено в петле обратной связи, уменьшающее
запас устойчивости по фазе. Некоторую
компенсацию этого эффекта дает включение
конденсатора равной емкости между выходом
ОУ и инвертирующим входом.
Скорость нарастания
Наряду со снижением полосы пропускания усилителя частотная коррекция дает еще один нежелательный эффект: скорость нарастания выходного напряжения ограничивается при этом довольно малой величиной. Максимальное значение скорости нарастания r определяется в основном скоростью заряда корректирующего конденсатора:
Максимальный выходной ток дифференциального каскада (см. рис. 10) равен току источника в цепи эмиттеров транзисторов Т1 и Т2. Принимая его равным 20 мкА, найдем для емкости корректирующего конденсатора Ск=30 пФ:
pмакс = 0,67 В/мкс.
Вследствие
ограниченного значения этой величины,
при быстрых изменениях выходного
напряжения возникают характерные
искажения сигнала, которые не могут
быть устранены путем введения отрицательной
обратной связи. Их называют динамическими
искажениями. Если входной сигнал усилителя
- синусоида, то, чем больше ее амплитуда,
тем при меньшей частоте появляются динамические
искажения.
Компенсация емкостной нагрузки
Если операционный усилитель имеет емкостную нагрузку, то последняя вместе с выходным сопротивлением усилителя образует инерционное звено, которое дает дополнительный фазовый сдвиг выходного напряжения. Все это уменьшает запас по фазе, и схема усилителя может самовозбудиться уже при незначительной величине нагрузочной емкости. Порой достаточно коснуться выхода усилителя щупом осциллографа, чтобы усилитель начал самовозбуждаться. Для устранения этого явления в цепь обратной связи включается дополнительный конденсатор Сф (рис. 17). В этом случае обратная связь представляет собой интегродифференцирующее фазо-опережающее звено, создающее в окрестности частоты среза положительный фазовый сдвиг, компенсирующий запаздывание, вносимое емкостью нагрузки.