Автор: Пользователь скрыл имя, 28 Декабря 2011 в 10:15, курсовая работа
В настоящее время одним из наиболее широко распространенных средств исследования и оптимизации функционирования систем управления (и вообще любых сложных социально-технических систем) является имитационное моделирование, в основном – с применением современной вычислительной техники. ЭВМ программируется таким образом, чтобы программный продукт «жил» по законам, соответствующим условиям существования реальной системы. Далее на такой имитационной модели можно отрабатывать воздействия различных факторов, влияющих на поведение системы, изучать влияние изменения внутренних параметров на эффективность функционирования и так далее.
1 Введение 4
2 Построение концептуальной модели 6
2.1 Постановка задачи 6
2.2 Анализ исходных данных и выбор недостающих 6
2.3 Создание концептуальной модели 7
3 Алгоритмизация модели и ее машинная реализация 8
3.1 Построение блок - схемы алгоритма 8
3.2 Построение блок - диаграммы 8
3.3 Составление таблицы определений 12
3.4 Программирование модели 12
4 Получение и интерпретация результатов 13
4.1 Планирование эксперимента 13
4.2 Проведение рабочих расчетов 13
4.3 Анализ результатов 13
5 Заключение 17
6 Список литературы 18
Московский Государственный Агроинженерный Университет
им. В.П.Горячкина
“Прикладная
информатика в экономике”
Курсовая
работа
по
предмету: «Имитационное моделирование
экономических процессов»
тема
: «Моделирование экономических процессов»
Выполнил
студент
Проверил
Москва 2011 год
Задание на курсовую
работу
Двухколейная железная дорога имеет между станциями А и В одноколейный участок с разъездом С. На разъезде имеется запасной путь, на котором один состав может пропустить встречный поезд. К станциям А и В поезда прибывают с двухколейных участков каждые 40 ± 10 мин. Участок пути АС поезда преодолевают за 15 ± 3 мин, а участок пути ВС - за 20 ± 3 мин. Со станции А и В поезда пропускают на одноколейный участок до разъезда только при условии, что участок свободен, а на разъезде не стоит состав. После остановки на разъезде поезда пропускаются на участок сразу после его освобождения. Поезд останавливается на разъезде, если по лежащему впереди него участку пути движется встречный поезд.
Смоделировать
работу одноколейного участка железной
дороги при условии, что в направлении
АВ через него должны проследовать 50 составов.
Определить среднее время ожидания составов
на станциях А и В, а также среднее время
ожидания на разъезде С и коэффициент
загрузки запасного пути.
В настоящее время одним из наиболее широко распространенных средств исследования и оптимизации функционирования систем управления (и вообще любых сложных социально-технических систем) является имитационное моделирование, в основном – с применением современной вычислительной техники. ЭВМ программируется таким образом, чтобы программный продукт «жил» по законам, соответствующим условиям существования реальной системы. Далее на такой имитационной модели можно отрабатывать воздействия различных факторов, влияющих на поведение системы, изучать влияние изменения внутренних параметров на эффективность функционирования и так далее.
Процессы функционирования различных систем и сетей связи могут быть представлены той или иной совокупностью систем массового обслуживания (СМО) – стохастических, динамических, дискретно-непрерывных математических моделей. Исследование характеристик таких моделей может проводиться либо аналитическими методами, либо путем имитационного моделирования.
Имитационная модель отображает стохастический процесс смены дискретных состояний СМО в непрерывном времени в форме моделирующего алгоритма. При его реализации на ЭВМ производится накопление статистических данных по тем атрибутам модели, характеристики которых являются предметом исследований. По окончании моделирования накопленная статистика обрабатывается, и результаты моделирования получаются в виде выборочных распределений исследуемых величин или их выборочных моментов. Таким образом, при имитационном моделировании систем массового обслуживания речь всегда идет о статистическом имитационном моделировании.
Одним из наиболее эффективных и распространенных языков моделирования сложных дискретных систем является в настоящее время язык GPSS. Он может быть с наибольшим успехом использован для моделирования систем, формализуемых в виде систем массового обслуживания. В качестве объектов языка используются аналоги таких стандартных компонентов СМО, как заявки, обслуживающие приборы, очереди и т.п. Достаточный набор подобных компонентов позволяет конструировать сложные имитационные модели, сохраняя привычную терминологию СМО.
На персональных компьютерах (ПК) типа IBM/PC язык GPSS реализован в рамках пакета прикладных программ GPSS/PC и GPSS World. Основной модуль пакета представляет собой интегрированную среду, включающую помимо транслятора со входного языка средства ввода и редактирования текста модели, ее отладки и наблюдения за процессом моделирования, графические средства отображения атрибутов модели, а также средства накопления результатов моделирования в базе данных и их статистической обработки. Кроме основного модуля в состав пакета входит модуль создания стандартного отчета (GPSS World) GPSS/PC, а также ряд дополнительных модулей и файлов.
В данной курсовой работе, выполнено проектирование, реализация и анализ результатов выполнения поставленной задачи с помощью программы GPSS World.
В задании на моделирование объекта четко и ясно описаны система железной дороги, состоящая из одноколенного участка (состоит из двух участков AC и CB) и разъезда на участке C, и процессы, протекающие в этой системе. Поэтому нет необходимости в дополнительном изучении предметной области.
При описании системы железной дороги задано время прихода поездов к станциям A и B – 40 +/- 10 мин. Участок пути АС поезда преодолевают за 15 ± 3 мин, а участок пути ВС – за 20 ± 3 мин. Со станции А и В поезда пропускают на одноколейный участок до разъезда только при условии, что участок свободен, а на разъезде не стоит состав. После остановки на разъезде поезда пропускаются на участок сразу после его освобождения. Поезд останавливается на разъезде, если по лежащему впереди него участку пути движется встречный поезд.
Эти данные являются входными параметрами. Теперь необходимо определить, достаточно ли этих данных для создания модели и получения нужных результатов?
В задании сказано, что необходимо определить среднее время ожидания составов на станциях А и В, а также среднее время ожидания на разъезде С и коэффициент загрузки запасного пути.
Среднее время ожидания составов на станциях А и В, среднее время ожидания на разъезде С и коэффициент загрузки запасного пути – выходные переменные моделируемой системы.
Теперь проанализируем законы распределения исходных данных.
Время поступления поездов на станции A и B равномерно распределено в интервале от 30 до 50 мин, т.е. задания с одинаковой вероятностью могут поступать через интервалы 30, 31, 32, 33, 34 ... 50 мин. Время преодоления участка AC равномерно распределено в интервале от 12 до 8 мин. Время преодоления участка BC равномерно распределено в интервале от 17 до 23 мин. Со станции А и В поезда пропускают на одноколейный участок до разъезда только при условии, что участок свободен, а на разъезде не стоит состав. После остановки на разъезде поезда пропускаются на участок сразу после его освобождения. Поезд останавливается на разъезде, если по лежащему впереди него участку пути движется встречный поезд.
Итак, можно сделать выводы, что исходные данные для моделирования достаточны.
Система железной дороги состоит из одноколенного участка пути AB и разъезда в точке C. На станции A и B поступают поезда. Со станции А и В поезда пропускают на одноколейный участок до разъезда только при условии, что участок свободен, а на разъезде не стоит состав. После остановки на разъезде поезда пропускаются на участок сразу после его освобождения. Поезд останавливается на разъезде, если по лежащему впереди него участку пути движется встречный поезд.
Участки
пути AC и CB, а также разъезд можно представить
как приборы. Тогда СМО будет выглядеть
следующим образом
Рис
1 – СМО в виде блок схемы.
Рис
2 – СМО в виде Q – схемы.
На
этом этапе создается схема
Блок-диаграмма – графическое представление операций, происходящих внутри системы. Другими словами, блок-диаграмма описывает взаимодействие событий внутри системы. Линии, соединяющие блоки, указывают маршруты потоков сообщений или описывают последовательность выполняемых событий. В случае нескольких вариантов действий от блока отходят несколько линий. Если же к блоку подходят несколько линий, то это означает, что выполняемая операция является общей для двух или более последовательностей блоков. Выбор логических путей может основываться на статистических или логических условиях, действующих в момент выбора.
Блок-диаграммы получили широкое применение при описании систем. При построении блок-диаграмм, следует соблюдать определенные условия, являющиеся основой создания программы на языке моделирования. В GPSS имеется определенное количество типов блоков для задания объектов и операций над ними. Каждому блоку соответствует графическое изображение на блок-диаграмме. Стрелки между блоками указывают маршруты потоков сообщений. Далее, для того, чтобы применить язык моделирования GPSS, каждый блок блок-диаграммы заменяется соответствующим оператором GPSS.
Построение блок-диаграммы GPSS модели системы обеспечивает необходимую гибкость модели в процессе ее эксплуатации, а также дает ряд преимуществ на стадии ее машинной отладки. При построении блочной модели производится разбиение процесса функционирования системы на отдельные достаточно автономные подпроцессы. Блоки такой модели бывают основными и вспомогательными. Каждый основной блок соответствует некоторому подпроцессу моделируемой системы, а вспомогательные блоки лишь представляют составную часть машинной модели, не отражая функции моделируемой системы, они нужны лишь для машинной реализации модели, фиксации и обработки результатов моделирования.
Для
поставленной задачи блок-диаграмма
представлена на рис. 4.