Компьютерная мышь

Автор: Пользователь скрыл имя, 05 Декабря 2012 в 19:36, реферат

Описание работы

Мышь воспринимает своё перемещение в рабочей плоскости (обычно на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В универсальных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором - манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши.

Содержание

1. Принцип действия
2. История
3. Датчики перемещения
3.1. Прямой привод
3.2. Шаровой привод
3.2.1. Контактные датчики
3.2.2. Оптопарные (оптомеханические) датчики
3.3. Оптические мыши первого поколения
3.4. Оптические светодиодные мыши
3.5. Оптические лазерные мыши
3.6. Индукционные мыши
3.7. Гироскопические мыши
4. Кнопки
4.1. Дополнительные кнопки
4.2. Сенсорное управление
5.Другие элементы управления
5.1. Колёса и потенциометры
5.2. Миниджойстик
5.3. Трекболы
5.4. Сенсорные полоски и панели
5.5. Гибридные элементы управления
6. Интерфейсы подключения
7. Беспроводные мыши
7.1. Оптическое соединение
7.2. Радиосвязь
7.3. Индукционные мыши
8. Дополнительные функции
9. Достоинства и недостатки
10. Способы хвата мыши
11. Программная поддержка
12. Использованная литература

Работа содержит 1 файл

реферат информатика норм.doc

— 201.50 Кб (Скачать)

Основной недостаток шарового привода - загрязнение шарика и снимающих роликов, приводящее к заеданию мыши и необходимости в периодической её чистке (отчасти эта проблема сглаживалась путём металлизации роликов). Несмотря на недостатки, шаровой привод долгое время доминировал, успешно конкурируя с альтернативными схемами датчиков. В настоящее время шаровые мыши почти полностью вытеснены оптическими мышами второго поколения.

Существовало два варианта датчиков для шарового привода.

3.2.1) Контактные датчики

Контактный датчик представляет собой текстолитовый диск с лучевидными  металлическими дорожками и тремя  контактами, прижатыми к нему. Такой  датчик достался шаровой мыши «в наследство»  от прямого привода.

Основными недостатками контактных датчиков является окисление контактов, быстрый износ и невысокая точность. Поэтому со временем все мыши перешли на бесконтактные оптопарные датчики.

3.2.2) Оптопарные (оптомеханические) датчики

Оптронный датчик состоит  из двойной оптопары - светодиода и двух фотодиодов (обычно - инфракрасных) и диска с отверстиями или лучевидными прорезями, перекрывающего световой поток по мере вращения. При перемещении мыши диск вращается, и с фотодиодов снимается сигнал с частотой, соответствующей скорости перемещения мыши.

Второй фотодиод, смещённый  на некоторый угол или имеющий  на диске датчика смещённую систему  отверстий/прорезей, служит для определения  направления вращения диска (свет на нём появляется/исчезает раньше или  позже, чем на первом, в зависимости от направления вращения).

3.3) Оптические мыши первого поколения

Оптические датчики  призваны непосредственно отслеживать  перемещение рабочей поверхности  относительно мыши. Исключение механической составляющей обеспечивало более высокую  надёжность и позволяло увеличить разрешающую способность детектора.

Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью - светоизлучающих и воспринимающих отражение от рабочей поверхности светочувствительных диодов. Такие датчики имели одно общее свойство — они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). На некоторых ковриках эти штриховки выполнялись красками, невидимыми при обычном свете (такие коврики даже могли иметь рисунок).

Недостатками таких  датчиков обычно называют:

  • необходимость использования специального коврика и невозможность его замены другим. Кроме всего прочего, коврики разных оптических мышей часто не были взаимозаменяемыми и не выпускались отдельно;
  • необходимость определённой ориентации мыши относительно коврика, в противном случае мышь работала неправильно;
  • чувствительность мыши к загрязнению коврика (ведь он соприкасается с рукой пользователя) - датчик неуверенно воспринимал штриховку на загрязнённых местах коврика;
  • высокую стоимость устройства.

В СССР оптические мыши первого  поколения, как правило, встречались  только в зарубежных специализированных вычислительных комплексах.

3.4) Оптические светодиодные мыши

Второе поколение оптических мышей имеет более сложное  устройство. В нижней части мыши установлен специальный светодиод, который подсвечивает поверхность, по которой перемещается мышь. Миниатюрная  камера «фотографирует» поверхность  более тысячи раз в секунду, передавая эти данные процессору, который и делает выводы об изменении координат. Оптические мыши второго поколения имеют огромное преимущество перед первым: они не требуют специального коврика и работают практически на любых поверхностях, кроме зеркальных. Они также не нуждаются в чистке.

Предполагалось, что такие  мыши будут работать на произвольной поверхности, однако вскоре выяснилось, что многие продаваемые модели (в  особенности первые широко продаваемые  устройства) не так уж и безразличны  к рисункам на коврике. На некоторых участках рисунка графический процессор способен сильно ошибаться, что приводит к хаотичным движениям указателя, не отвечавших реальному перемещению. Для склонных к таким сбоям мышей необходимо подобрать коврик с иным рисунком или вовсе с однотонным покрытием.

Отдельные модели также  склонны к детектированию мелких движений при нахождении мыши в состоянии  покоя, что проявляется дрожанием  указателя на экране, иногда с тенденцией сползания в ту или иную сторону.

Датчики второго поколения постепенно совершенствуются, и в настоящее время мыши, склонные к сбоям, встречаются гораздо реже. Кроме совершенствования датчиков, некоторые модели оборудуются двумя датчиками перемещения сразу, что позволяет, анализируя изменения сразу на двух участках поверхности, исключать возможные ошибки. Такие мыши иногда способны работать на стеклянных, оргстеклянных и зеркальных поверхностях (на которых не работают другие мыши).

Также выпускаются коврики  для мышей, специально ориентированные  на оптические мыши. Например, коврик, имеющий на поверхности силиконовую плёнку с взвесью блёсток (предполагается, что оптический сенсор гораздо чётче определяет перемещения по такой поверхности). 

Недостатком данной мыши является сложность её одновременной  работы с графическими планшетами, последние ввиду своей аппаратной особенности иногда теряют истинное направление сигнала при движении пера и начинают искажать траекторию движения инструмента при рисовании. При использовании мышей с шаровым приводом подобных отклонений не наблюдается. Для устранения данной проблемы рекомендуется использовать лазерные манипуляторы. Также, к недостаткам оптических мышей некоторые люди относят свечение таких мышей даже при выключенном компьютере.

3.5) Оптические лазерные мыши

В последние годы была разработана новая, более совершенная разновидность оптического датчика, использующего для подсветки полупроводниковый лазер.

О недостатках таких  датчиков пока известно мало, но известно об их преимуществах:

  • более высоких надёжности и разрешении
  • отсутствии заметного свечения (сенсору достаточно слабой подсветки лазером видимого или, возможно, инфракрасного диапазона)
  • низком энергопотреблении

3.6) Индукционные мыши

Индукционные мыши используют специальный коврик, работающий по принципу графического планшета или собственно входят в комплект графического планшета. Некоторые планшеты имеют в своем составе манипулятор, похожий на мышь со стеклянным перекрестием, работающий по тому же принципу, однако немного отличающийся реализацией, что позволяет достичь повышенной точности позиционирования за счёт увеличения диаметра чувствительной катушки и вынесения её из устройства в зону видимости пользователя.

Индукционные мыши имеют  хорошую точность, и их не нужно  правильно ориентировать. Индукционная мышь может быть «беспроводной» (к компьютеру подключается планшет, на котором она работает), и иметь индукционное же питание, следовательно, не требовать аккумуляторов, как обычные беспроводные мыши.

Мышь в комплекте  графического планшета позволит сэкономить немного места на столе (при условии, что на нём постоянно находится планшет).

Индукционные мыши редки, дороги и не всегда удобны. Мышь для  графического планшета практически  невозможно поменять на другую (например, больше подходящую по руке, и т. п.).

3.7) Гироскопические мыши

Мышь, оснащённая гироскопом, распознаёт движение не только на поверхности, но и в пространстве: её можно  взять со стола и управлять  движением кисти в воздухе.Гироскопические  датчики совершенствуются, например по заявлению Logitech, механические датчики выполненные по её технологии MEMS, используемые, например в мыши MX Air миниатюрнее традиционных гироскопических.

4) Кнопки

Кнопки — основные элементы управления мыши, служащие для выполнения основных манипуляций: выбора объекта (нажатиями), активного перемещения (то есть перемещения с нажатой кнопкой, для рисования или обозначения начала и конца отрезка на экране, который может трактоваться как диагональ прямоугольника, диаметр окружности, исходная и конечная точка при перемещении объекта, выделении текста и т. п.).

Количество кнопок на мыши ограничивает концепция их использования  вслепую аналогично клавишам аккордной  клавиатуры. Однако, в отличие от аккордной клавиатуры, которая может  безболезненно использовать пять клавиш (по одной на каждый палец), мышь ещё необходимо перемещать тремя (большой, безымянный и мизинец) или двумя (большой и мизинец) пальцами. Таким образом, можно сделать две или три полноценные кнопки для использования параллельно с перемещением мыши по столу - под указательный, средний и безымянный пальцы (для трех кнопок). Крайние кнопки называют по положению — левая (под указательный палец правши), правая и средняя, для трёхкнопочной мыши.

Долгое время двух- и трёхкнопочные концепции противостояли  друг другу. Двухкнопочные мыши поначалу лидировали, так как на их стороне, кроме простоты (три кнопки проще перепутать), удобства и отсутствия излишеств, было программное обеспечение, которое едва загружало две кнопки. Но, несмотря ни на что, трёхкнопочные мыши никогда не прекращали продаваться, пока противостоянию не пришёл конец.

Противостояние двух- и трёхкнопочных мышей закончилось  после появления прокрутки экрана (скролла), новой популярной возможности. На двухкнопочной мыши появилась  небольшая средняя (третья) кнопка (для  включения и выключения скроллинга, и по совместительству — средняя кнопка), которая вскоре трансформировалась в колесо прокрутки, нажатие на которое работает как средняя кнопка. Трёхкнопочные же мыши объединили среднюю кнопку с колёсиком.

Apple пришла к использованию  дополнительных кнопок мыши своим путем. Изначально посчитав излишней даже вторую кнопку, до последнего времени Apple строила все свои интерфейсы под однокнопочную мышь. Однако, современные выпускаемые фирмой Apple мыши, начиная с Mighty Mouse, могут программироваться под использование от одной до четырёх кнопок.

4.1) Дополнительные кнопки

Производители постоянно  стараются добавить на топовые модели дополнительные кнопки, чаще всего - кнопки под большой или указательный и реже — под средний палец. Некоторые кнопки служат для внутренней настройки мыши (например, для изменения чувствительности) или двойные-тройные щелчки (для программ и игр), на другие - в драйвере и/или специальной утилитой назначаются некоторые системные функции, например:

  • горизонтальная прокрутка;
  • двойное нажатие (double click);
  • навигация в браузерах и файловых менеджерах;
  • управление уровнем громкости и воспроизведением аудио- и видеоклипов;
  • запуск приложений;
  • и т. п.

4.2) Сенсорное управление

 

В 2009 году фирмой Apple представлена мышь Magic Mouse, являющаяся первой в мире мышью с сенсорным управлением и поддержкой технологии мультитач. Вместо кнопок, колёсиков и прочих элементов управления в этой мыши используется сенсорный тачпад, позволяющий при помощи различных жестов осуществлять нажатия, прокрутку в любом направлении, масштабирование картинки, переходы по истории документов и пр.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) Другие элементы управления

Большинство элементов, не являющихся кнопками, служат для  прокрутки (скроллинга) контента (веб-страница, документ, список, листбокс и т. п.) в окнах приложений и других элементах интерфейса (например, полосах прокрутки). Среди них можно выделить несколько конструктивов.

5.1) Колёса и потенциометры

Колёса и потенциометры - диски, выступающие из корпуса, доступные для вращения. Потенциометры, в отличие от колёс, имеют крайние положения.

Наличие одного колеса между  кнопками (или «скролла»; для вертикальной прокрутки) на сегодняшний день является стандартом де-факто. Такое колесо может  отсутствовать у концептуальных моделей, имеющих для прокрутки иные конструктивы.

Также колёса и потенциометры  могут быть использованы для регулировки, например, громкости.

5.2) Миниджойстик

Миниджойстик - плечо с двумя кнопками, исключающее одновременное нажатие обеих кнопок (или сдвоенное под прямым углом плечо, ориентированное в четырёх основных направлениях). Плечо может иметь центральный рычажок или, наоборот, центральное углубление (аналогично джойстикам игровых пультов). Изредка встречаются миниджойстики с потенциометром.

Кроме вертикальной и горизонтальной прокрутки, джойстики мыши могут быть использованы для альтернативного перемещения указателя или регулировок, аналогично колёсам.

5.3) Трекболы

Трекбол - шарик, вращающийся в любом направлении. Движения шарика снимаются механическим (как в механической мыши) или оптическим способом (применяемым в современных трекболах).

Трекбол можно рассматривать  как двухмерное колесо прокрутки. Аналогично джойстику, трекбол может быть использован  для альтернативного перемещения  указателя.

5.4) Сенсорные полоски и панели

Сенсорные полоски и  панели - элементы, определяющие перемещение пальца по поверхности точно так же, как тачпад. Полоски определяют движение в одном измерении, панели - в двух.

Сенсорные полоски и  панели аналогичны колесам и трекболам без движущихся частей.

5.5) Гибридные элементы управления

Гибридные элементы управления объединяют в себе несколько принципов.

Колёса, джойстики и  трекболы могут включать в себя кнопку, срабатывающую при прямом нажатии  на элемент управления. Так, стандартное колесо прокрутки одновременно является средней кнопкой мыши.

Колесо может иметь  элементы джойстика - свободу наклона по оси вращения. Таково качающееся колесо прокрутки (наклон колеса служит для горизонтальной прокрутки), оно одновременно является колесом, джойстиком и кнопкой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6) Интерфейсы подключения

Первые мыши подключались к компьютерам x86 через последовательный коммуникационный интерфейс RS-232 (последовательные мыши) с разъёмом DB25F и, позднее, DB9F, и  с помощью своего адаптера (шинные мыши англ. bus mouse). В 1990-х годах большинство выпускавшихся мышей имели последовательное подключение.

Информация о работе Компьютерная мышь