Классификация компьютеров. Особенности и технические характеристики классов

Автор: Пользователь скрыл имя, 21 Декабря 2010 в 23:14, реферат

Описание работы

Компьютер – это устройство или средство, предназначенное для обработки информации. Однако компьютер может обрабатывать только ту информацию, которая представлена в числовой форме. Информацию в иной форме представления для ввода в компьютер необходимо преобразовать в числовую форму.
Так как человек не обходится одной сферой деятельности, он создает различные орудия для данной деятельности. Компьютеры этому не исключения. Каждый компьютер имеет свое назначение. Каждая отрасль производства стремится к тому, чтобы максимально улучшить коэффициент полезного действия, увеличить производительность, а так же сделать данный процесс наиболее дешевым. В этом то и состоит главная задача вычислительных машин — упрощать и ускорять работу!

Работа содержит 1 файл

Федеральное агентство по образованию.doc

— 1.02 Мб (Скачать)

       В построенной по схеме фон Неймана ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в устройстве управления.

       Общеизвестно  что компьютеры имеют разную внутреннюю структуру, элементы и разные виды связей между ними.

       Например  по архитектуре можно классифицировать компьютеры следующим образом:

      • компьютеры с шинной архитектурой
      • компьютеры с канальной архитектурой
 

Параллельные и конвейерные архитектуры.

       Рассмотрим  также понятие параллельной обработки. Затраты времени как при числовой, так и нечисловой обработке легко  снизить путем распараллеливания  операций. Это означает, что сходные  действия над группами данных выполняются одновременно одинаковыми процессорами. Параллелизм – это естественное решение проблемы обработки больших наборов данных с повторяющейся структурой. 
Для организации параллельной обработки требуется: 
Составление параллельных программ, т.е. отображение в явной форме параллельной обработки с помощью специальных конструкций языка, ориентированного на параллельные вычисления; 
Автоматическое обслуживание параллелизма. Последовательная программа может быть автоматически проанализирована и выявлена явная или скрытая параллельная обработка. Она должна быть преобразована в явную 
Отображение параллельной обработки вручную или автоматически на рабочие алгоритмы, использующие специфические характеристики заданной архитектуры. 
При этом параллельные архитектуры, в особенности такие как матричные процессоры достигают высокой производительности именно с учетом архитектурных ограничений. 
Конвейерная обработка. Конвейерная обработка улучшает использование аппаратных ресурсов для заданного набора процессов. Пример конвейерной организации сборочный транспортер на производстве. Если транспортер использует аналогичные, но не тождественные изделия, то это – последовательный конвейер., если же все изделия одинаковые, то это – векторный конвейер. В архитектуре вычислительных машин традиционными примерами последовательных конвейеров являются конвейерное устройство обработки команд и арифметико-логическое устройство. Конвейеры содержащие циклы называются циклическими. Конвейеры можно подразделять на однофункциональные и многофункциональные, а также на статические и динамические. Многофункциональный конвейер может перестраиваться при переходе от одной группы заданий к другой, тогда как в динамическом конвейере такая перестройка может производится между отдельными заданиями. Конвейерное устройство умножения, выполняющее одну определенную функцию, называется однофункциональным статическим конвейером.

Неклассические типы архитектур вычислительных машин.

       В ЭВМ классической архитектуры, чтобы  найти значение элемента данных мы указываем начальное значение адреса блока памяти, а затем смещение конкретно элемента относительно начального адреса. Эти два значения складываются и получается искомый адрес. Этот вид памяти называется адресуемым. При ассоциативной адресации данные выбираются не по адресу, а по содержимому полей. Вначале пытались отразить ассоциативную адресацию и параллельную обработку на ЭВМ классической архитектуры, в которой один процессор обращается к памяти по адресу. В этой архитектуре для обработки всей информации мы располагаем всего лишь одним процессором. При этом миллиарды символов информации находятся в состоянии ожидания передачи через канал и обработки. При этом затраты времени будут очень большими. При использовании вышеизложенных концепций на этом уровне требуется внести в архитектуру два изменения: 
А) использовать параллельные процессоров, т.е. параллелизм обработки; 
Б) приблизить процессоры к данным, чтобы устранить постоянную передачу данных, т.е. распределенную логику. Кроме того в ЭВМ классической архитектуры обращение к памяти происходит по адресу, что приемлемо при числовой обработке, однако для организации нечисловой обработки, где обращение происходит по содержание приходится вводить режим эмуляции ассоциативной адресации с помощью основного адресного доступа. При этом создаются специальные таблицы для перевода ассоциативного запроса в адрес. Учитывая, количество информации , легко представить с какими затратами связана обработка этих таблиц. 
Современные же СУБД должны уметь эффективно работать и с системами нечисловой обработки. В общих чертах новая архитектура должна удовлетворять следующим требованиям: 
-параллелизм и использование процессоров в памяти; 
ассоциативная память с ориентацией на обработку наборов данных; 
специализированный набор команд с непосредственной аппаратной поддержкой; 
эффективная работа в режиме разделения времени. 
В прошлом разработка новых архитектур ЭВМ шла в двух направлениях. Одно направление, целью которого было устранении ограничений традиционной архитектуры при числовой обработке, концентрировалось на вопросах параллелизма и векторных операциях. Другое было посвящено параллельным ассоциативным структурам – ассоциативным процессорам. Однако отсутствие четко сформулированных проблем и недостаточное развитие технологий не позволяло до последнего времени реализовать эти проекты. 
Высокопараллельные МПВС имеют несколько разновидностей: 
магистральные (конвейерные) МПВС, в которых процессоры одновременно выполняют разные операции над последовательным потоком обрабатываемых данных; по принятой классификации такие МПВС относятся к системам с многократным потоком команд и однократным потоком данных (МКОД или MISD – Multiple Instruction Single Data); 
векторные МПВС, в которых все процессоры одновременно выполняют одну команду над различными данными – однократный поток команд с многократным потоком данных (ОКМД или SIMD – Single Instruction Multiple Data); 
матричные МПВС, в которых МП одновременно выполняют разные операции над несколькими последовательными потоками обрабатываемых данных – многократный поток команд с многократным потоком данных (МКМД или МIМD – Multiple Instruction Multiple Data). 
В суперЭВМ используются все три варианта архитектуры МПВС: 
структура MIMD в классическом ее варианте (например, в суперкомпьютере BSP фирмы Burroughs); 
параллельно-конвейерная модификация, или MMISD, т. е. многопроцессорная (Multiple) MISD-архитектура (например, в суперкомпьютере Эльбрус 3); 
параллельно-векторная модификация, или MMISD, т. е. многопроцессорная SIMD архитектура (например, в суперкомпьютере Cray 2).

       Наибольшую  эффективность показала MSIMD-архитектура, поэтому в современных супер-ЭВМ  чаще всего используется именно она (суперкомпьютеры фирм Cray, Fujitsu, NEC, Hitachi и др.). 
Первая суперЭВМ была задумана в 1960 г. и создана в 1972 г. (машина ILLIAC IV с производительностью 20 MFLOPS), а начиная с 1974 г. лидерство в разработке суперЭВМ захватила фирма Cray Research, выпустившая ЭВМ Cray 1 с производительностью 160 MFLOPS и объе-мом оператив¬ной памяти 64 Мбайта, а в 1984 г. – ЭВМ Cray 2, в полной мере реализовавшую архитектуру MSIMD и ознаменовавшую появление нового поколения суперЭВМ. Производительность Cray 2 составляла 2000 MFLOPS, объем оперативной памяти – 2 Гбайта. Классическое соотношение, так как критерий сбалансированности ресурсов ЭВМ – каждому MFLOPS производительности процессора должно соответствовать не менее 1 Мбайта оперативной памяти. 
В настоящее время в мире насчитывается несколько тысяч суперЭВМ (в 1991 г. – 900 шт.) начиная от простеньких офисных Cray EL до мощных Cray 3, Cray 4, Cray Y-MP C90 фирмы Cray Research, Cyber 205 фирмы Control Data, SХ-3 и SX-X фирмы NEC, VP 2000 фирмы Fujitsu, VPP 500 фирмы Siemens и другие. Их производительностью составляет несколько десятков тысяч MFLOPS. Среди лучших суперЭВМ можно отметить и отечественные суперкомпьютеры
.

Современную архитектуру компьютера определяют следующие  принципы:

  1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).
  2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.
  3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

 

Классификация компьютеров по функциональным возможностям.

     Схема  классификации компьютеров, исходящая  из их производительности, размеров  и функционального назначения, приведена  на рис. 1. Следует отметить, что  вопрос об отнесении конкретного  компьютера к одной из категорий  этой схемы может иметь неоднозначный ответ, привязанный к конкретной исторической обстановке или доминирующему поколению ЭВМ. 

     Место супер-ЭВМ в этой иерархии уже обсуждалось. Определить супер-ЭВМ можно лишь относительно: это самая мощная вычислительная система, существующая в соответствующий исторический период. В настоящее время наиболее известны мощные супер-ЭВМ “Cray” и “IBM SP2” (США). Модель “Сгау-3”, выпускаемая с начала 90-х годов на основе принципиально новых микроэлектронных технологий, является 16-процессорной машиной с быстродействием более 10 млрд. операций в секунду (по другим данным 16) над числами с “плавающей точкой” (т.е. длинными десятичными числами; такие операции гораздо более трудоемки, чем над целыми числами); в модели CS 6400 число процессоров доведено до 64. Супер-ЭВМ требуют особого температурного режима, зачастую водяного охлаждения (или даже охлаждения жидким азотом). Их производство по масштабам несопоставимо с производством компьютеров других классов (так, в 1995 г. корпорацией “Cray” было выпущено всего около 70 таких компьютеров).

Суперкомпьютеры — это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп — миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края (high end).

    Оксфордский толковый словарь по вычислительной технике, изданный почти 10 лет назад, в 1986 году, сообщает, что суперкомпьютер - это очень мощная ЭВМ с производительностью свыше 10 MFLOPS (миллионов операций с плавающей запятой в секунду). Сегодня этот результат перекрывают уже не только рабочие станции, но даже, по крайней мере, по пиковой производительности, и ПК. В начале 90-х годов границу проводили уже около отметки в 300 MFLOPS. В этом году, судя по появившимся в печати сообщениям, специалисты двух ведущих "суперкомпьютерных" стран, - США и Японии, - договорились о подъеме планки до 5 GFLOPS.

    Однако  такой подход к определению суперЭВМ не совсем корректен. Очевидно, что, современный  двухпроцессорный компьютер Cray C90 любой  здравомыслящий человек назовет  суперЭВМ. А тем не менее, его пиковая производительность меньше 2 GFLOPS. С этим вопросом тесно связаны и ограничения (ранее - КОКОМ, теперь - Госдепартамента США) на поставку высокопроизводительных средств вычислительной техники другим странам. Компьютеры с производительностью свыше 10 000 млн. теоретических операций в сек. (MTOPS), согласно определению Госдепартамента США, считаются суперкомпьютерами [1].

    Более корректно, на наш взгляд, перечислить основные признаки, характеризующие суперЭВМ, среди которых кроме высокой производительности следует отметить:

    ·  самый современный технологический уровень (например, GaAs-технология);

    ·  специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами);

    ·  цена, обычно свыше 1-2 млн. долл. 

    Архитектура суперкомпьютеров основана на идеях параллелизма и конвейеризации вычислений.

    В этих машинах параллельно, то есть одновременно, выполняется множество похожих  операций (это называется мультипроцессорной обработкой). Таким образом, сверхвысокое быстродействие обеспечивается не для всех задач, а только для задач, поддающихся распараллеливанию.

    Что такое конвееpная обработка? Приведем сравнение — на каждом рабочем месте конвейера выполняется один шаг производственного процесса, а на всех рабочих местах в одно и то же время обрабатываются различные изделия на всевозможных стадиях. По такому принципу устроено арифметико-логическое устройство суперкомпьютера.

    Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами — векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном — выдаёт сразу векторные команды.

    Векторная аппаратура очень дорога, в частности, потому, что требуется много сверхбыстродействующей памяти под векторные регистры.

    Наиболее  распространённые суперкомпьютеры — массово-параллельные компьютерные системы. Они имеют десятки тысяч процессоров, взаимодействующих через сложную, иерархически организованую систему памяти.

    В качестве примера рассмотрим характеристики многоцелевого массово-параллельного  суперкомпьютера среднего класса Intel Pentium Pro 200. Этот компьютер содержит 9200 процессоров Pentium Pro на 200 Мгц, в сумме (теоретически) обеспечивающих производительность 1,34 Терафлоп (1 Терафлоп равен 1012 операций с плавающей точкой в секунду), имеет 537 Гбайт памяти и диски ёмкостью 2,25 Терабайт. Система весит 44 тонны (кондиционеры для неё — целых 300 тонн) и потребляет мощность 850 кВт.

    Суперкомпьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т.д.

Информация о работе Классификация компьютеров. Особенности и технические характеристики классов