Классификация компьютеров. Особенности и технические характеристики классов

Автор: Пользователь скрыл имя, 21 Декабря 2010 в 23:14, реферат

Описание работы

Компьютер – это устройство или средство, предназначенное для обработки информации. Однако компьютер может обрабатывать только ту информацию, которая представлена в числовой форме. Информацию в иной форме представления для ввода в компьютер необходимо преобразовать в числовую форму.
Так как человек не обходится одной сферой деятельности, он создает различные орудия для данной деятельности. Компьютеры этому не исключения. Каждый компьютер имеет свое назначение. Каждая отрасль производства стремится к тому, чтобы максимально улучшить коэффициент полезного действия, увеличить производительность, а так же сделать данный процесс наиболее дешевым. В этом то и состоит главная задача вычислительных машин — упрощать и ускорять работу!

Работа содержит 1 файл

Федеральное агентство по образованию.doc

— 1.02 Мб (Скачать)

    Быстродействие  порядка 10-20 тысяч  операций в секунду.

  • Но это только техническая сторона ENIAC был размером с целый дом и весил 30 т.
  • На его создание потратили 0,5 млн. долларов.
  • Он потреблял 200 кВт энергии.
  • Лампа выходила из строя каждые 7-8 минут.
  • Он мог сложить два числа за 3 мск.
 

     Очень  важна и другая — способы  использования компьютеров, стиль  программирования, особенности математического  обеспечения. 
         

     Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

    ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках.

      Использование электронной лампы в качестве основного элемента ЭВМ создавало  множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

      

ЭВМ первого поколения отличались невысокой надежностью, требовали системы охлаждения и имели значительные габариты. Процесс программирования требовал значительного искусства, хорошего знания архитектуры ЭВМ и ее программных возможностей. Сначала использовалось программирование в кодах ЭВМ (машинный код), затем появились автокоды и ассемблеры, в определенной мере автоматизирующие процесс программирования задач. ЭВМ первого поколения использовались для научно-технических расчетов.

      Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств  ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом. 

      Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента. 

    Несмотря  на ограниченность возможностей, эти  машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования  погоды, решения задач атомной  энергетики и др.

    Опыт  использования машин первого  поколения показал, что существует огромный разрыв между временем, затрачиваемым  на разработку программ, и временем счета.  

    Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

    Первые отечественные ламповые вычислительные машины МЭСМ и БЭСМ были созданы под руководством академика С. А. Лебедева. МЭСМ (малая электронная счетная машина), созданная в 1951 г., сыграла важную роль в подготовке первых в стране программистов, инженеров и конструкторов ЭВМ, интенсифицировала разработку электронных элементов специально для применения в ЭВМ. БЭСМ (большая электронная счетная машина), являясь в то время самой быстродействующей ЭВМ в мире (8000 опер/с), открыла серию машин, получивших широкое распространение в СССР. В первой половине 50-х гг. у нас в стране появились ЭВМ серий «Стрела» и «Урал», а в 60-х гг.— «Проминь», «Мир», «Минск», «Раздан». Эти машины могли справиться с широким кругом математических и логических задач, встречающихся при решении научных и сложных инженерных проблем.  

Второе  поколение

     Второе поколение (период от конца 50-х до конца 60-х годов). В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Соединение элементов: печатные платы и навесной монтаж проводов. Габариты значительно уменьшились. Производительность от сотен тысяч до 1 млн. операций в секунду. Быстродействие — до сотен тысяч операций в секунду, ёмкость памяти — до нескольких десятков тысяч слов. Упростилась эксплуатация. Во времена второго поколения активно стали развиваться языки программирования высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде. Компьютеры второго поколения имели до 32 Кбайт оперативной памяти, а скорость вычислений их была от 200000 до 300000 операций в секунду.

    Развитие программного обеспечения характеризуется созданием развитых макроассемблеров, повышающих уровень общения с ЭВМ, но являющихся в основе своей машинно-ориентированными языками низкого уровня. В ассемблерах впервые появляются средства раздельной компиляции и перемещаемости программ, которая явилась первым шагом к виртуализации ресурсов и появлению специальных промежуточных языков, а также новых системных программ - загрузчиков и компоновщиков. Конец 50-х годов характеризуется началом этапа автоматизации программирования, приведшим к появлению языков программирования B0,Commercial Translator,FACT, MathMatic и, наконец, появлением целого ряда проблемно-ориентированных языков программирования высокого уровня (ЯВУ): Fortran (1957 г.), явившийся первым языком такого класса, Algol-60, АКИ-400 и др. Дальнейшим развитием программной составляющей вычислительной техники было создание развитых библиотек стандартных программ на различных языках программирования и различного назначения, мониторов и диспетчеров для управления режимом работы ЭВМ и планированием ее ресурсов, заложивших прочные основы последующей концепции операционных систем следующего поколения. 

    Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются  трансляторами, переводят программу с языка высокого уровня на машинный язык.

    Появился  широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

 Первыми из них были ФОРТРАН,  АЛГОЛ, КОБОЛ, Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

    Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

    В рамках второго поколения все более четко проявляется дифференциация ЭВМ на малые, средние и большие, позволившая существенно расширить сферу применения ВТ, приступить к созданию автоматизированных систем управления предприятиями (АСУ), целыми отраслями (ОАСУ) и технологическими процессами (АСУТП). Однако данный прогресс обеспечивался не только собственно развитием ЭВМ, большую роль здесь играло и развитие сопутствующего оборудования (средства ввода/вывода, внешняя память и др.). При этом, от поколения к поколению данная компонента компьютерной информатики играет все большую роль, во многом определяя уровень интерфейса пользователя с ЭВМ и их возможности по обработке информации.

Третье  поколение

     Третье поколение (период от конца 60-х до конца 70-х годов). Элементная база: интегральные схемы (ИС), которые вставляются в специальные гнезда на печатной плате. Увеличилась производительность от сотен тысяч до миллионов операций в секунду. Более оперативно производится ремонт обычных неисправностей. Увеличились объемы памяти. Первые интегральные схемы содержали в себе десятки, затем – сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилось к тысяче, их стали называть большими интегральными схемами – БИС; затем появились сверхбольшие интегральные схемы – СБИС.

    ЭВМ третьего поколения начали производиться  во второй половине 60-х годов, когда  американская фирма IBM приступила к  выпуску системы машин IBM-360. Это  были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС. В нашей стране в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370.

    Наиболее важным критерием различия ЭВМ второго и третьего поколений является существенное развитие архитектуры ЭВМ, удовлетворяющей требованиям как решаемых задач, так и работающих на них программистов

     Машины третьего поколения —  это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

    Машины  третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

    Значительно более мощным становится программное обеспечение, обеспечивающее функционирование ЭВМ в различных режимах эксплуатации. Появляются развитые cистемы управления базами данных (СУБД), системы автоматизирования проектных работ (САПР) различного назначения, совершенствуются АСУ, АСУТП и др. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения. По-прежнему появляются новые и развиваются существующие языки и системы программирования, количество которых достигает уже порядка 3000. Наиболее широкое применение ЭВМ третьего поколения нашли в качестве технической основы создания больших и сверхбольших информационных систем. Важную роль в решении данной проблемы сыграло создание программного обеспечения (СУБД), обеспечивающего создание и ведение баз и банков данных различного назначения. Разнообразие вычислительных и программных средств, а также периферийного оборудования поставило на повестку дня вопросы эффективного выбора комплексов программно-вычислительных средств для тех или иных приложений.

    Примеры машин третьего поколения — семейства IBM—360, IBM—370, ЕС ЭВМ (Единая система  ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. 

    Быстродействие  машин внутри семейства  изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость  оперативной памяти достигает нескольких сотен тысяч слов.

    На  машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски. Накопители на магнитных дисках (НМД) работают гораздо быстрее, чем накопители на магнитных лентах (НМЛ). Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители.

    В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

    В 70-е годы получило мощное развитие линия  малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP. В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами. Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

Четвертое поколение

      Четвертое поколение (от конца 70-х годов по настоящее время). Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Такие микропроцессоры осуществляют автоматическое управление работой этой техники.

     Парк  всех машин четвертого поколения  можно условно разделить на пять основных классов:

  • микро-ЭВМ,
  • персональные компьютеры (ПК),
  • мини-ЭВМ, специальные ЭВМ,
  • ЭВМ общего назначения,
  • супер-ЭВМ.
 
 

      С появлением микропроцессоров  связано одно из важнейших  событий в истории вычислительной  техники - создание и применение  микроЭВМ. Существенное отличие  микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже. Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры. Начало широкой продажи персональных ЭВМ связано с именами С. Джобса и В. Возняка, основателей фирмы "Эппл компьютер" (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров "Apple". С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена – IBM PC (Personal Computer). Фирма придерживалась принципа открытой архитектуры и магистрально-модульного построения компьютера (любой изготовитель может установить свои комплектующие к компьютеру).

Информация о работе Классификация компьютеров. Особенности и технические характеристики классов