Искусственный интеллект

Автор: d*****************@mail.ru, 26 Ноября 2011 в 10:44, реферат

Описание работы

Понятие искусственный интеллект, как впрочем и просто интеллект, весьма расплывчаты. Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой – искусственный интеллект.

Содержание

Введение……………………………….…………………………………………..3

1) Понятие «искусственный интеллект»…………………………..……………5

1.1. Подходы к созданию искусственного интеллекта…..…………..…………9

1.2. Проблемы построения искусственного интеллекта…..……………..……13

Заключение…………………………………………………..……..…………….19

Список используемой литературы…………………………….…..……………21

Работа содержит 1 файл

информатика реферат.docx

— 47.41 Кб (Скачать)

       Однако только  после  второй  мировой войны появились устройства,

казалось  бы,  подходящие для достижения заветной цели   моделирования разумного  поведения;  это были электронные  цифровые вычислительные машины. «Электронный мозг»,  как тогда восторженно  называли  компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов  за несколько часов до получения  окончательных данных.  Этот «подвиг» компьютера лишь подтвердил вывод,  к которому в то время пришли многие ученые:  наступит тот день, когда автоматические вычислители, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать невычислительные  процессы,  свойственные человеческому мышлению, в том числе восприятие и обучение, распознавание образов,  понимание повседневной речи и письма, принятие решений в неопределенных ситуациях,  когда известны не все факты. 

       Многие изобретатели компьютеров и первые  программисты  развлекались составляя программы для отнюдь не технических занятий,  как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы.  Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.

       Несмотря на многообещающие перспективы,  ни одну из разработанных до  сих  пор программ ИИ нельзя назвать «разумной» в обычном понимании этого слова.  Это объясняется тем,  что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким  умом  и широким кругозором.  Даже среди исследователей ИИ теперь многие сомневаются,  что большинство подобных изделий принесет существенную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы. 
 
 

Кибернетический подход:

       Попытки построить машины, способные к разумному поведению, в значительной мере вдохновлены идеями профессора Н. Винера,  одной из выдающихся личностей в интеллектуальной истории Америки. 

       Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. «Если затруднения в решении какой-либо  проблемы психологии имеют математический характер, пояснял он,  то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего».

       В дальнейшем Винер разработал на принципе обратной  связи  теории как  машинного  так и человеческого разума.  Он доказывал,  что именно благодаря обратной связи все живое приспосабливается к окружающей среде и добивается  своих целей.  «Все машины,  претендующие на «разумность», писал он, должны обладать способностью, преследовать определенные цели и приспосабливаться, т.е. обучаться». Созданной им науке Винер дает название кибернетика,  что в переводе с греческого означает рулевой.(2) 

Нейронный подход:

       Многие ученые стали  понимать,  что  создателям вычислительных машин  есть  чему  поучиться у биологии.  Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох,  обладавший как и Винер философским складом ума и широким кругом интересов.  В 1942 г.  Маккалох, участвуя в научной конференции в Нью-Йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии.  Высказанные в докладе идеи перекликались с собственными  идеями  Маккалоха относительно работы головного мозга.  В течении следующего года Маккалох в соавторстве со своим 18 летним  протеже,  блестящим  математиком Уолтером Питтсом,  разработал теорию деятельности головного мозга. Эта теория и являлась той основой,  на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.[2]

       Исходя отчасти из предшествующих исследований нейронов  (основных активных клеток,  составляющих нервную систему животных),  проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства,  оперирующие двоичными числами.  Двоичные числа, состоящие из цифр единица и нуль,  рабочий инструмент одной из  систем  математической  логики.  Английский математик XIXв.  Джордж Буль,  предложивший эту остроумную систему,  показал, что логические утверждения можно закодировать в виде единиц и нулей,  где единица соответствует истинному высказыванию а нуль  ложному, после чего этим можно оперировать как обычными числами. В 30е годы XX в. пионеры информатики,  в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально  подходит  для  электронно-вычислительных устройств.  Маккалох и Питтс предложили конструкцию сети из электронных «нейронов» и показали,  что подобная  сеть может выполнять практически любые вообразимые числовые или логические операции.  Далее они предположили,  что такая сеть в состоянии также обучаться,  распознавать образы, обобщать, т.е.  она обладает всеми чертами интеллекта.

Из этого  кибернетического,  или нейро-модельного, подхода к машинному разуму  скоро сформировался так называемый «восходящий метод»  движение от простых аналогов нервной системы примитивных существ,  обладающих малым числом нейронов,  к сложнейшей нервной системе человека и даже выше.[1] 
 

    1. Проблемы  построения искусственного интеллекта
 

       Гносеологический анализ проблемы  искусственного интеллекта вскрывает  роль таких познавательных орудий, как категории, специфическая  семиотическая система, логические  структуры, ранее накопленное  знание. Они обнаруживаются не  посредством исследования физиологических  или психологических механизмов  познавательного процесса, а выявляются  в знании, в его языковом выражении.  Орудия познания, формирующиеся в конечном счете на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями.

      Развитие  систем искусственного интеллекта за последние десятилетия идет по этому  пути. Однако степень продвижения  в данном направлении в отношении  каждого из указанных познавательных орудий неодинакова и в целом  пока незначительна.

      I. В наибольшей мере системы искусственного интеллекта используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и в сущности алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и т. д.).

       II. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.

       Прежде всего для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.

       Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особенно тех, в которых проблемная область заранее жестко не определена.

       Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших перспективных задач теории искусственного интеллекта.

       III. Воплощение в информационные массивы и программы систем искусственного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее», «единичное») используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.

       IV. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д.

       Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. д.

       V. Еще в меньшей мере современные системы искусственного интеллекта способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.

       Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.[5]

       X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «нетелесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.

       Системы, обладающие психикой, отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична.

Информация о работе Искусственный интеллект