База данных

Автор: Пользователь скрыл имя, 05 Февраля 2013 в 17:23, реферат

Описание работы

Понятие базы данных.
Трехуровневая архитектура базы данных.
Жизненный цикл базы данных.
Архитектура СУБД.
Реляционная модель данных.
Проектирование реляционных баз данных.
Нормальные формы отношений.
Реляционная алгебра.

Работа содержит 1 файл

трехуровневая архитектура базы данных.doc

— 216.00 Кб (Скачать)

Менеджер транзакций — отвечает за целостность системы и должен обеспечить одновременную обработку многих запросов, отсутствие интерференции запросов (сложение, min, max) и защиту данных в случае выхода системы из строя. Он взаимодействует с менеджером запросов, т. к. должен знать, на какие данные воздействуют текущие запросы (для избежания конфликтных ситуаций), и может отложить некоторые запросы и операции для избежания конфликтов. Менеджер транзакций взаимодействует также с менеджером памяти, т. к. схемы защиты данных обычно включают в себя хранение файла регистрации изменений данных. При правильном порядке выполнения операции файл регистрации будет содержать запись изменений, поэтому можно заново выполнить даже те изменения, которые не достигли диска из-за сбоя в системе.

Типичные СУБД позволяют пользователю сгруппировать  несколько запросов и/или изменений  в одной транзакции. Транзакция — это группа операций, которые необходимо выполнить последовательно, как одно целое.

Как правило, система  БД поддерживает одновременно множество транзакций. Именно правильное выполнение всех таких транзакций и обеспечивает менеджер транзакций. Правильное выполнение транзакций обеспечивается ACID-свойствами (atomicity, consistency, isolation, durability):

  • атомарность — выполнение либо всех транзакций, либо ни одной из них (например, изъятие денег из банкомата и внесение соответственного дебета в счет клиента должны быть единственной атомарной транзакцией, не допускается выполнение каждой из этих операций по отдельности);
  • непротиворечивость — состояние, при котором данные соответствуют всем возможным ожиданиям (например, условие непротиворечивости для БД авиационных линий состоит в том, что ни одно из мест в самолете не бронируется для двух пассажиров);
  • изоляция — при параллельном выполнении двух или более транзакций их результаты должны быть изолированы друг от друга. Одновременное выполнение двух транзакций одновременно не должно привести к результату, которого не было бы, если они выполнялись последовательно (например, при продаже билетов на один и тот же рейс в случае свободного последнего места при одновременном запросе двух агентов, запрос одного должен быть выполнен, другого — нет);
  • долговременность — после завершения транзакции результат не должен быть утрачен в случае сбоя системы, даже если этот сбой происходит сразу после завершения транзакции.

Рассмотрим  также 3 типа обращения к СУБД:

  1. Запросы — вопросы по поводу данных могут генерироваться двумя способами:
  1. с помощью общего интерфейса запросов (например, реляционная СУБД допускает запросы SQL, которые передаются процессору запросов, а также получает ответы на них);

б) с помощью интерфейсов прикладных программ — запросы передаются через специальный интерфейс (через этот интерфейс нельзя передавать произвольные запросы);

  1. Модификации — это операции по изменению данных. Они также могут выполняться либо с помощью общего интерфейса, либо через интерфейс прикладной программы;
  2. Модификации схемы — это команды администраторов БД, которые имеют право изменять схему БД или создавать новую БД.

Архитектура клиент/сервер. Во многих вариантах современного ПО реализуется архитектура клиент/сервер: один процесс (клиент) посылает запрос для выполнения другому процессу (серверу). Как правило, БД часто разделяется на процесс сервера и несколько процессов клиента.

В простейшей архитектуре  клиент/сервер вся СУБД является сервером, за исключением интерфейсов запроса, которые взаимодействуют с пользователем  и посылают запросы или другие команды на сервер. Например, реляционная  СУБД часто использует язык SQL для представления запросов от клиента к серверу. Затем сервер БД предоставляет клиенту ответ в виде таблицы (отношения). Существует тенденция увеличения нагрузки на клиента, т. к. при наличии множества одновременно работающих пользователей БД с сервером могут возникнуть проблемы.

 

5. Реляционная  модель данных.


РМД некоторой  предметной области представляет собой  набор отношений, изменяющихся во времени. При создании информационной системы  совокупность отношений позволяет  хранить данные об объектах предметной области и моделировать связи между ними.

Отношение представляет собой двумерную таблицу, содержащую некоторые данные. Математически под N-арным отношением R понимают множество декартова произведения D1 D2 … Dn множеств (доменов) D1, D2, …, Dn ( ), необязательно различных:

R

D1
D2
Dn,

где D1 D2 … Dn – полное декартово произведение, т.е. набор всевозможных сочетаний из n элементов каждое, где каждый элемент берется их своего домена.

Домен - это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами:

  • Домен имеет уникальное имя (в пределах базы данных).
  • Домен определен на некотором простом типе данных или на другом домене.
  • Домен может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для данного домена.
  • Домен несет определенную смысловую нагрузку.

Атрибут отношения есть пара вида <Имя_атрибута : Имя_домена>. Имена атрибутов должны быть уникальны в пределах отношения. Часто имена атрибутов отношения совпадают с именами соответствующих доменов.

Отношение R, определенное на множестве доменов, содержит две части: заголовок и тело.

Заголовок отношения – это фиксированное количество атрибутов отношения:

Заголовок отношения  описывает декартово произведение доменов, на котором задано отношение. Заголовок статичен, он не меняется во время работы с базой данных. Если в отношении изменены, добавлены или удалены атрибуты, то в результате получим уже другое отношение (пусть даже с прежним именем).

Тело  отношения содержит множество кортежей отношения. Каждый кортеж отношения представляет собой множество пар вида <Имя_атрибута : Значение_атрибута>:

 

 

таких что значение атрибута принадлежит домену . Тело отношения представляет собой набор кортежей, т.е. подмножество декартового произведения доменов. Таким образом, тело отношения собственно и является отношением в математическом смысле слова. Тело отношения может изменяться во время работы с базой данных - кортежи могут изменяться, добавляться и удаляться.

Отношение обычно записывается в виде:

 

,

или короче

,

или просто

.

Число атрибутов  в отношении называют степенью (или -арностью) отношения. Мощность множества кортежей отношения называют мощностью отношения.

Схемой  отношения называется перечень имен атрибутов данного отношения с указанием домена, к которому они относятся:

Если атрибуты принимают значения из одного и того же домена, то они называются -сравнимыми, где – множество допустимых операций сравнений, заданных для данного домена. Например, если домен содержит числовые данные, то для него допустимы все операции сравнения, тогда . Однако, и для доменов, содержащих символьные данные, могут быть заданы не только операции сравнения по равенству и неравенству значений. Если для данного домена задано лексикографическое упорядочение, то он имеет также полный спектр операций сравнения.

Схемы двух отношений  называются эквивалентными, если они имеют одинаковую степень и возможно такое упорядочение имен атрибутов в схемах, что на одинаковых местах будут находиться сравнимые атрибуты, то есть атрибуты, принимающие значения из одного домена:

Пусть – схема отношения . – схема отношения после упорядочения имен атрибутов. Тогда

~

Таким образом, для эквивалентных отношений выполняются следующие условия:

  • Таблицы имеют одинаковое количество столбцов.
  • Таблицы содержат столбцы с одинаковыми наименованиями.
  • Столбцы с одинаковыми наименованиями содержат данные из одних и тех же доменов.
  • Таблицы имеют одинаковые строки с учетом того, что порядок столбцов может различаться.

Все такие таблицы  есть различные изображения одного и того же отношения.

Свойства отношений. Свойства отношений непосредственно следуют из приведенного выше определения отношения. В этих свойствах в основном и состоят различия между отношениями и таблицами.

  • В отношении нет одинаковых кортежей.
  • Кортежи не упорядочены (сверху вниз).
  • Атрибуты не упорядочены (слева направо).
  • Все значения атрибутов атомарны.

 

 

Рис. Схематическое изображение отношения

 

Реляционная модель представляет собой базу данных в виде множества взаимосвязанных отношений. В каждой связи одно отношение может выступать как основное, а другое отношение выступает в роли подчиненного. Таким образом, один кортеж основного отношения может быть связан с несколькими кортежами подчиненного отношения. Для поддержки этих связей оба отношения должны содержать наборы атрибутов, по которым они связаны. В основном отношении это первичный ключ отношения, который однозначно определяет кортеж основного отношения. В подчиненном отношении для моделирования связи должен присутствовать набор атрибутов, соответствующий первичному ключу основного отношения. Однако здесь этот набор атрибутов уже является вторичным ключом или внешним ключом, т.е. он определяет множество кортежей отношения, которые связаны с единственным кортежем основного отношения.

 

6. Проектирование реляционных баз данных.


При проектирование реляционной БД должны быть решены следующие проблемы:

1) С учетом  семантики предметной области  необходимо наилучшим способом  представить объекты предметной  области в виде абстрактной  модели данных (даталогическое проектирование). Т.е. - определиться со схемой БД: из каких отношений должны состоять БД, какие атрибуты должны быть у этих отношений, каковы связи между отношениями.

2) Обеспечить  эффективность выполнения запросов  к базе данных (физическое проектирование БД).

После проведения этапа даталогического проектирования должны быть получены следующие результирующие документы:

  • Построение корректной схемы данных ориентируясь на реляционную модель данных.
  • Описание схемы БД в терминах выбранной СУБД.
  • Описание внешних моделей в терминах выбранной СУБД.
  • Описание декларативных правил поддержки целостности БД.
  • Разработка процедур поддержки семантической целостности БД.

Итак, задача проектирования реляционной БД состоит в выборе схемы базы из множества альтернативных вариантов.

Корректной называется схема БД, в которой отсутствуют нежелательные зависимости между атрибутами отношений. Процесс разработки корректной схемы БД называется логическим проектированием.

Проектирование  схемы БД можно выполнить двумя  методами:

  • Метод декомпозиции (разбиения) – исходное множество отношений, входящих в схему БД заменяется другим множеством отношений, являющихся проекциями исходных отношений! При этом число отношений возрастает.
  • Метод синтеза – компоновка схемы БД из заданных исходных элементарных зависимостей между объектами предметной области.

Классическое  проектирование БД связано с теорией нормализацией, которая основана на анализе функциональных зависимостей между атрибутами отношений. Функциональные зависимости определяют устойчивые отношения между объектами и их свойствами в рассматриваемой предметной области.

Метод декомпозиции представляет собой процесс последовательной нормализации схем отношений: каждая новая  итерация соответствует нормальной форме более высокого порядка и обладает лучшими свойствами по сравнению с предыдущей. Т.о., изначально предполагается существование универсального отношения, содержащего все атрибуты БД, затем на основе анализа связей между атрибутами осуществляется (или – делается попытка осуществить) декомпозиция универсального отношения, т.е. переход к нескольким отношениям меньшей размерности, причем исходное отношение должно восстанавливаться с помощью операции естественного соединения.

Информация о работе База данных