Автор: Пользователь скрыл имя, 14 Мая 2012 в 17:43, реферат
Электрическая станция – совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.
В зависимости от источника энергии различают:
Введение 3
1 Гидроэнергетика 3
1.1 История гидроэнергетики 3
1.1.1 Античная и средневековая гидроэнергетика 3
1.1.2 Гидроэнергетика в девятнадцатом столетии 3
1.1.3 Гидроэлектроэнергетика в двадцатом веке 3
1.1.4 Советская гидроэнергетика 3
1.1.5 Мировая гидроэнергетика в 21 веке 3
1.2 Перспективы гидроэнергетики 3
1.3 Потенциал мировой гидроэнергетики 3
1.4 ГЭС 3
1.5 Технологии 3
1.6 Принцип работы ГЭС 3
1.7 Плотина 3
1.8 Большая и малая гидроэнергетика 3
1.9 Новые разработки 3
1.10 Основные достоинства и недостатки 3
1.11 Экологические аспекты использования гидроэнергетики 3
2 ГРЭС (КЭС) 3
2.1 Общие сведения 3
2.2 Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС 3
3 ТЭС 3
4 ТЭЦ 3
4.1 Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива 3
4.2 Влияние ТЭЦ на окружающую среду 3
5 АЭС 3
5.1 Передвижные АЭС 3
5.2 Рельсы и гусеницы 3
5.3 Энергосамоходы 3
5.4 Дела так и не нашлось 3
5.5 Для экстремальных условий 3
5.6 Оранжевый дым 3
5.7 Зачем снимать колеса? 3
5.8 Реактор, которого испугались 3
6 Гидроаккумулирующие электростанции 3
7 ITER 3
7.1 История 3
7.2 Строительство 3
7.3 Радиационная безопасность 3
8 другие виды электростанций 3
8.1 Ветроэнергетика 3
8.1.1 История ветроэнергетики 3
8.1.2 Ветряные электростанции. 3
8.1.3 Перспективы ветроэнергетики 3
8.2 Волновые электростанции 3
8.2.1 История волновых электростанций 3
8.3 Геотермальная энергетика 3
8.3.1 Геотермальные электростанции 3
8.3.2 Источники геотермальной энергии 3
8.3.3 Принципы работы 3
8.3.4 Перспективы геотермальной энергетики 3
8.4 Солнечная энергетика 3
8.4.1 Солнечные электростанции 3
8.4.2 СЭС башенного типа 3
8.4.3 СЭС тарельчатого типа 3
8.4.4 СЭС, использующие фотобатареи 3
8.4.5 СЭС использующие параболические концентраторы 3
8.4.6 Комбинированные СЭС 3
8.5 Перспективы солнечной энергетики 3
9 Осмотическая электростанция 3
9.1 Экологичность 3
9.2 Принцип действия 3
9.3 Преимущества и недостатки технологии 3
9.4 Потенциал и перспективы осмотической энергетики 3
Заключение 3
В
зависимости от вида и агрегатного
состояния теплоносителя
При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т.е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.
К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы специальной вентиляции, аварийного расхолаживания и др.
В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).
Для
предохранения персонала АЭС
от радиационного облучения
При
авариях в системе охлаждения
реактора для исключения перегрева
и нарушения герметичности
Наличие
биологические защиты, систем специальной
вентиляции и аварийного расхолаживания
и службы дозиметрического контроля
позволяет полностью
Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС ‒ использование пара сравнительно низких параметров, насыщенного или слабоперегретого.
При
этом для исключения эрозионного
повреждения лопаток последних
ступеней турбины частицами влаги,
содержащейся в пару, в турбине
устанавливают сепарирующие устройства.
Иногда необходимо применение выносных
сепараторов и промежуточных
перегревателей пара. В связи с
тем что теплоноситель и
В
число специфичных требований к
компоновке оборудования АЭС входят:
минимально возможная протяжённость
коммуникаций, связанных с радиоактивными
средами, повышенная жёсткость фундаментов
и несущих конструкций
Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного кВт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30‒40% (на ТЭС 60‒70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности ‒ в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 МВт. Часть тепловой мощности реактора этой АЭС (29 МВт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 МВт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т. воды из Каспийского моря.
В
большинстве промышленно
Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).
На
3-й Международной научно-
Когда в свет вышел ноябрьский номер «ПМ», в котором мы рассказывали о существовавших некогда в СССР планах создания сверхширококолейных поездов с атомными локомотивами, в адрес редакции пришло письмо. Автор напомнил нам о том, что хоть проекты атомной железной дороги так и не вышли за рамки эскизов, идея мобильной ядерной силовой установки (могущей передвигаться в том числе и по рельсам) была воплощена в металле, и даже не один раз. Действительно, упоминание о советских передвижных АЭС наверняка было бы уместным в нашей ноябрьской статье «Подкиньте атома в топку», зато теперь мы, несколько «вникнув в историю», решили рассказать о них подробно.
Корни этой истории уходят, разумеется, в эпоху атомной романтики – в середину 1950-х. В 1955 году Ефим Павлович Славский – один из корифеев атомной промышленности СССР, будущий глава Минсредмаша, прослуживший на этом посту от Никиты Сергеевича до Михаила Сергеевича, – посетил ленинградский Кировский завод. Именно в беседе с директором ЛКЗ И.М. Синевым впервые прозвучало предложение о разработке мобильной атомной электростанции, которая могла бы питать электроэнергией гражданские и военные объекты, расположенные в отдаленных районах Крайнего Севера и Сибири.
Предложение
Славского стало руководством к
действию, и уже вскоре ЛКЗ в
кооперации с Ярославским
Эскизный проект станции появился в 1957 году, а уже два года спустя было произведено специальное оборудование для постройки опытных образцов ТЭС-3 (транспортируемой электростанции).
В те времена практически все в атомной индустрии приходилось делать «с нуля», однако опыт создания ядерных реакторов для транспортных нужд (например, для ледокола «Ленин») уже существовал, и на него можно было бы опереться.
Одним
из главных факторов, которые приходилось
учитывать авторам проекта при
выборе тех или иных инженерных решений,
была, разумеется, безопасность. С этой
точки зрения оптимальной была признана
схема малогабаритного
В 1960 году созданное энергетическое оборудование
смонтировали на гусеничном шасси, позаимствованном
у последнего советского тяжелого танка
Т-10, который производился с середины 1950-х
до середины 1960-х годов. Правда, для ПАЭС
базу пришлось удлинить, так что энергосамоход
(так стали называть вездеходы, перевозящие
атомную электростанцию) имел десять катков
против семи у танка.
Но
даже при такой модернизации разместить
всю энергоустановку на одной
машине было невозможно. ТЭС-3 представляла
собой комплекс из четырех энергосамоходов.
Первый энергосамоход нес на себе ядерный
реактор с транспортируемой биозащитой
и специальный воздушный радиатор для
снятия остаточного охлаждения. На второй
машине монтировались парогенераторы,
компенсатор объема, а также циркуляционные
насосы для подпитки первого контура.
Собственно выработка электроэнергии
была функцией третьего энергосамохода,
где размещался турбогенератор с оборудованием
конденсатно-питательного тракта. Четвертая
машина играла роль пункта управления
ПАЭС, а также имела резервное энергетическое
оборудование. Здесь находились пульт
и главный щит со средствами пуска, пусковой
дизель-генератор и блок аккумуляторных
батарей.
В дизайне энергосамоходов первую скрипку играли лапидарность и прагматизм. Поскольку ТЭС-3 предполагалось эксплуатировать преимущественно в районах Крайнего Севера, оборудование помещалось внутрь утепленных кузовов так называемого вагонного типа. В поперечном сечении они представляли собой шестиугольник неправильной формы, который можно описать как трапецию, поставленную на прямоугольник, что невольно вызывает ассоциацию с гробом.
ПАЭС
предназначалась для
Система биозащиты состояла из двух частей: транспортируемой и стационарной. Транспортируемая биозащита перевозилась вместе с реактором. Активная зона реактора помещалась в своего рода свинцовый «стакан», который находился внутри бака. Когда ТЭС-3 работала, бак заливался водой. Слой воды резко снижал активацию нейтронами стенок бака биозащиты, кузова, рамы и прочих металлических частей энергосамохода. После окончания кампании (периода работы электростанции на одной заправке) воду сливали и транспортировка осуществлялась при пустом баке.
Под стационарной биозащитой понимались своего рода боксы из земли или бетона, которые перед пуском ПАЭС требовалось возводить вокруг энергосамоходов, несущих на себе реактор и парогенераторы.
В августе 1960 года собранную ПАЭС доставили в Обнинск, на испытательную площадку Физико-энергетического института. Меньше чем через год, 7 июня 1961 года, реактор достиг критичности, а 13 октября состоялся энергетический пуск станции. Испытания продолжались до 1965 года, когда реактор отработал свою первую кампанию. Однако на этом история советской мобильной АЭС фактически закончилась. Дело в том, что параллельно знаменитый обнинский институт разрабатывал еще один проект в области малой атомной энергетики. Им стала плавучая АЭС «Север» с аналогичным реактором. Как и ТЭС-3, «Север» проектировался преимущественно для нужд энергообеспечения военных объектов. И вот в начале 1967 года Министерство обороны СССР решило отказаться от плавучей атомной станции. Заодно были остановлены работы и по наземной мобильной энергоустановке: ПАЭС была переведена в стояночный режим. В конце 1960-х появилась надежда на то, что детищу обнинских ученых все-таки найдется практическое применение. Предполагалось, что атомная станция могла бы использоваться в нефтедобыче в тех случаях, когда в нефтеносные слои требуется закачать большое количество горячей воды, чтобы поднять ископаемое сырье ближе к поверхности. Рассматривали, к примеру, возможность такого использования ПАЭС на скважинах в районе города Грозного. Но даже послужить кипятильником для нужд чеченских нефтяников станции не удалось. Хозяйственная эксплуатация ТЭС-3 была признана нецелесообразной, и в 1969 году энергоустановку полностью законсервировали. Навсегда.