Автор: Пользователь скрыл имя, 14 Мая 2012 в 17:43, реферат
Электрическая станция – совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.
В зависимости от источника энергии различают:
Введение 3
1 Гидроэнергетика 3
1.1 История гидроэнергетики 3
1.1.1 Античная и средневековая гидроэнергетика 3
1.1.2 Гидроэнергетика в девятнадцатом столетии 3
1.1.3 Гидроэлектроэнергетика в двадцатом веке 3
1.1.4 Советская гидроэнергетика 3
1.1.5 Мировая гидроэнергетика в 21 веке 3
1.2 Перспективы гидроэнергетики 3
1.3 Потенциал мировой гидроэнергетики 3
1.4 ГЭС 3
1.5 Технологии 3
1.6 Принцип работы ГЭС 3
1.7 Плотина 3
1.8 Большая и малая гидроэнергетика 3
1.9 Новые разработки 3
1.10 Основные достоинства и недостатки 3
1.11 Экологические аспекты использования гидроэнергетики 3
2 ГРЭС (КЭС) 3
2.1 Общие сведения 3
2.2 Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС 3
3 ТЭС 3
4 ТЭЦ 3
4.1 Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива 3
4.2 Влияние ТЭЦ на окружающую среду 3
5 АЭС 3
5.1 Передвижные АЭС 3
5.2 Рельсы и гусеницы 3
5.3 Энергосамоходы 3
5.4 Дела так и не нашлось 3
5.5 Для экстремальных условий 3
5.6 Оранжевый дым 3
5.7 Зачем снимать колеса? 3
5.8 Реактор, которого испугались 3
6 Гидроаккумулирующие электростанции 3
7 ITER 3
7.1 История 3
7.2 Строительство 3
7.3 Радиационная безопасность 3
8 другие виды электростанций 3
8.1 Ветроэнергетика 3
8.1.1 История ветроэнергетики 3
8.1.2 Ветряные электростанции. 3
8.1.3 Перспективы ветроэнергетики 3
8.2 Волновые электростанции 3
8.2.1 История волновых электростанций 3
8.3 Геотермальная энергетика 3
8.3.1 Геотермальные электростанции 3
8.3.2 Источники геотермальной энергии 3
8.3.3 Принципы работы 3
8.3.4 Перспективы геотермальной энергетики 3
8.4 Солнечная энергетика 3
8.4.1 Солнечные электростанции 3
8.4.2 СЭС башенного типа 3
8.4.3 СЭС тарельчатого типа 3
8.4.4 СЭС, использующие фотобатареи 3
8.4.5 СЭС использующие параболические концентраторы 3
8.4.6 Комбинированные СЭС 3
8.5 Перспективы солнечной энергетики 3
9 Осмотическая электростанция 3
9.1 Экологичность 3
9.2 Принцип действия 3
9.3 Преимущества и недостатки технологии 3
9.4 Потенциал и перспективы осмотической энергетики 3
Заключение 3
В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.
Но, в то же время, образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.
Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.
Это
понимают многие специалисты и поэтому
проблема сохранения природной среды
при активном гидротехническом строительстве
актуальна как никогда. В настоящее
время особенно важен точный прогноз
возможных последствий
Сегодня разработка методов определения экологического энергопотенциала не производится. А это означает, что развитие гидроэнергетики пока приостановлено, поскольку отсутствие экологических экспертиз может нарушить энергетическую безопасность, которая и без того находится под угрозой.
ГРЭС, государственная районная электростанция, тепловая конденсационная электростанция, производящая только электрическую энергию. В 1912-14 по инициативе русского инженера Р. Э. Классона под Москвой была сооружена первая в мире районная электростанция на местном топливе (торфе) мощностью 15 МВт – «Электропередача», ныне ГРЭС им. Р. Э. Классона, предназначавшаяся для удовлетворения растущей потребности в электрификации московского района. Планом ГОЭЛРО (1920) предусматривалось сооружение нескольких тепловых электростанций, среди которых наиболее известна Шатурская ГРЭС. Постепенно термин «ГРЭС» по существу почти потерял свой первоначальный смысл («районная») и в современном понимании означает конденсационную электростанцию (КЭС) весьма большой мощности (тыс.и МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. В начале 60-х гг. в СССР разработаны проекты типовых ГРЭС мощностью 1000-1200 МВт и 2400 МВт с агрегатами 150, 200, 300 и 500 МВт. В 1966 вступили в строй последние турбоагрегаты Приднепровской ГРЭС (2400 МВт) – крупнейшей в СССР и одной из самых мощных в мире, к 1970 были построены Конаковская ГРЭС (2400 МВт) и Змиёвская ГРЭС (2400 МВт); в 1970 сооружена Криворожская ГРЭС № 2 (2400 МВт); проектируется (1971) первенец Западно-сибирского топливно-энергетического комплекса Итатская ГРЭС-1 мощностью 4000 МВт.
Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены.
Чем
крупнее КЭС, тем дальше она может
передавать электроэнергию, т.е. по мере
увеличения мощности возрастает влияние
топливно-энергетического
В
последнее время появились
В России мощные (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири.
На базе Канско-Ачинского
Конденсационные электрические станции КЭС – это тепловые паротурбинные электростанции, в которых теплота, выделяющаяся при сжигании органического топлива, превращается сначала в механическую энергию, а затем в электрическую.
Характерный признак КЭС – отработанный в турбине пар не используется для нестанционных нужд, а подвергается охлаждению (конденсации) в специальных устройствах – конденсаторах, после чего направляется обратно в котёл. Для работы КЭС требуется большое количество воды. Поэтому строят их вблизи водоёмов. В качестве топлива на конденсационных электрических станциях используется уголь, нефть или природный газ.
Твёрдое топливо (уголь) сначала дробится специальными дробилками, затем подсушивается и размельчается до пылевидного состояния специальными мельницами. Угольная пыль вместе с воздушным потоком подаётся в топку котла дутьевым вентилятором для лучшего сгорания топлива.
Продукты сгорания топлива (дымовые газы), пройдя золоуловители с помощью дымососа, выбрасываются в атмосферу через дымовую трубу.
Теплота, получаемая при сжигании топлива, используется для получения пара. Пар из котла (парогенератора) подаётся в пароперегреватель, где его параметры (температура и давление) доводятся до необходимых величин, а затем по паропроводу поступает на рабочие лопатки паровой турбины.
Если между рабочими лопатками турбины не происходит расширения пара, то есть давление пара не меняется, то такая турбина называется активной.
У реактивной турбины происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара, турбины характеризуются степенями реактивности. Сейчас турбины выполняют многоступенчатыми, причём в одной турбине могут быть как активные, так и реактивные (с разной степенью реактивности) ступени.
В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора, вырабатывающего электрическую энергию.
Отработавший в турбине пар после своего расширения от начального давления на входе турбины – 30 МПа до конечного на выходе 0,0035 МПа поступает в конденсатор турбины, где превращается в воду – конденсат, который конденсатным насосом откачивается и проходит через деаэратор. Там из воды удаляются газы, и к ней добавляется химически очищенная вода, чтобы восполнить потери. После чего вода вновь подаётся в котёл, и затем цикл превращения воды повторяется.
Система технического водоснабжения КЭС включает в себя источник водоснабжения, циркуляционные насосы, которыми охлаждающая вода из водоёма подаётся в конденсатор, а также подводящие и отводящие водоводы.
Основные особенности КЭС:
выработки не зависит от теплового потребления);
состояния требует 3–10 часов);
повышенных напряжений 110 – 750 кВ;
рис. № 1. Схема
КЭС на угле:
1 – градирня; 2 – циркуляционный насос; 3 – линия
электропередачи; 4 – повышающий трансформатор;
5 – турбогенератор; 6 – цилиндр низкого
давления паровой турбины; 7 – конденсатный насос;
8 – поверхностный конденсатор; 9 – цилиндр
среднего давления паровой турбины; 10 – стопорный клапан;
11 – цилиндр высокого давления паровой
турбины; 12 – деаэратор; 13 – регенеративный подогреват
Основным типом электростанций в России являются тепловые (ТЭС(рис. № 2)). Эти установки вырабатывают примерно 67% электроэнергии России.
рис. № 2
На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей. Тепловая электростанция – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. На сегодняшний день большая часть электроэнергии производиться на ТЭС. Первые ТЭС появились в конце 19 в. (в 1882 – в Нью-Йорке, 1883 – в Петербурге, 1884 – в Берлине) и получили преимущественное распространение. В середине 70-х гг. XX в. ТЭС – основной вид электрических станций. Доля вырабатываемой ими электроэнергии составляла: в СССР и США св. 80% (1975), в мире около 76% (1973). Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в котлоагрегате для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора. Главным элементом ТПЭС является котлоагрегат. Котлоагрегат – котельный агрегат, конструктивно объединённый в единое целое комплекс устройств для получения под давлением пара или горячей воды за счёт сжигания топлива. Главной частью котлоагрегата являются топочная камера и газоходы, в которых размещены поверхности нагрева, воспринимающие тепло продуктов сгорания топлива. Элементы котлоагрегата опираются на каркас и защищены от потерь тепла обмуровкой и изоляцией. Котлоагрегаты применяются на тепловых электростанциях для снабжения паром турбин; в промышленных и отопительных котельных для выработки пара и горячей воды на технологические и отопительные нужды; в судовых котельных установках. Конструкция котлоагрегата зависит от его назначения, вида применяемого топлива и способа сжигания, единичной паропроизводительности, а также от давления и температуры вырабатываемого пара.
В топочной камере котлоагрегата происходят сгорание топлива и частичное охлаждение продуктов сгорания в результате лучистого теплообмена между нагретыми газами и покрывающими стены топочной камеры трубами, по которым циркулирует охлаждающая их среда (вода или пар). Система этих труб называется топочными экранами. На выходе из топки газы имеют температуру порядка 1000°С. Для дальнейшего охлаждения газов на их пути устанавливают трубчатые поверхности нагрева – пароперегреватели, выполняемые обычно в виде ширм – трубчатых змеевиков, собранных в плоские пакеты. Теплообмен в ширмовых поверхностях осуществляется излучением и конвекцией, поэтому часто такие поверхности называют полурадиационными. Пройдя ширмовый пароперегреватель, газы с температурой 800–900°С поступают в конвективные пароперегреватели высокого и низкого давления, представляющие собой пакеты труб. Теплообмен в этих и последующих поверхностях нагрева осуществляется в основном конвекцией, и они называются конвективными. После пароперегревателя на пути газов, имеющих температуру 600–700°С, устанавливается водяной экономайзер, а далее воздухоподогреватель, в котором газы охлаждаются до 130–170°С. Экономайзер – элемент котлоагрегата, теплообменник, в котором вода перед подачей в котёл подогревается уходящими из котла газами. Дальнейшему снижению температуры уходящих из котлоагрегата газов путём полезного использования их тепла для нагрева рабочей среды препятствует конденсация на поверхностях нагрева паров воды и серной кислоты, образующейся при сжигании сернистых топлив, что приводит к интенсивному загрязнению поверхностей нагрева золовыми частицами и к коррозии металла. Охлажденные газы, пройдя устройства очистки от золы и в некоторых случаях от серы, выбрасываются дымовой трубой в атмосферу. Твёрдые продукты сгорания топлива, уловленные в котлоагрегате, периодически или непрерывно удаляются через системы золоудаления и шлакоудаления. Для поддержания поверхностей нагрева в чистоте в котлоагрегате предусматривается комплекс периодически включаемых обдувочных и обмывочных аппаратов и дробеочистительных устройств.
По
характеру движения рабочей среды
котлоагрегаты бывают с многократной
естественной или принудительной циркуляцией
и прямоточные. В котлоагрегатах
с многократной циркуляцией рабочая
среда непрерывно движется по замкнутому
контуру, частично испаряясь в обогреваемой
части контура. Образовавшийся пар
отделяется от воды в барабане, а
испарённая часть котловой воды возмещается
питательной водой, подаваемой питательным
насосом в водяной экономайзер
и далее в барабан. Движение рабочей
среды по циркуляционному контуру
в котлоагрегате с естественной
циркуляцией осуществляется вследствие
разности плотностей пароводяной смеси
в обогреваемой части контура
и воды в необогреваемой или слабо
обогреваемой его части. В котлоагрегате
с принудительной циркуляцией рабочая
среда по контуру перемещается под
действием циркуляционного
Котлоагрегат для энергоблока мощностью 300 МВт представляет собой сооружение высотой более 50 м, в плане занимает площадь порядка 1 тыс. м2. На сооружение такого котлоагрегата расходуется около 4,5 тыс. т металла, примерно 1/3 этого количества приходится на трубные системы, работающие под давлением свыше 25 МН/м2. КПД котлоагрегата превышает 90%. Турбоагрегат и снабжающий его паром парогенератор с их вспомогательным оборудованием и трубопроводами пара и воды образуют энергоблок ТПЭС. Питательные и конденсатные насосы, регенеративные подогреватели, деаэраторы относятся к вспомогательному оборудованию турбинной установки. Вспомогательное оборудование котлоагрегата, работающей на твёрдом топливе, составляют пылеприготовительное оборудование и золоуловители, дутьевые вентиляторы, подающие воздух в топочную камеру парогенератора, и дымососы, отсасывающие продукты сгорания топлива: дымовые газы удаляются в атмосферу через дымовые трубы высотой 150–360 м. В котлоагрегатах на газомазутном топливе, работающих с избыточным давлением в топочной камере и в газоходах, вместо дутьевых вентиляторов используют воздуходувки с повышенным напором; дымососы при этом не требуются. Общие вспомогательные производственные установки и сооружения ТПЭС – установки и сооружения технического водоснабжения, топливного и зольного хозяйства. Основное назначение технического водоснабжения – обеспечение турбоагрегатов водой, необходимой для охлаждения отработавшего пара (на конденсационных электростанциях расход воды составляет свыше 30 м3/сек в расчёте на турбину мощностью около 1 ГВт). Источником водоснабжения могут быть река, озеро, море. Большей частью применяют оборотное водоснабжение, с сооружением охлаждающих прудов (на конденсационных электростанциях), реже – прямоточное водоснабжение, с однократным пропусканием охлаждающей воды через конденсаторы турбин. Топливное хозяйство ТПЭС, использующей твёрдое топливо – уголь, включает разгрузочные устройства, систему ленточных конвейеров, подающих топливо в бункеры парогенераторов, топливный склад с необходимыми механизмами и транспортными устройствами, дробильное оборудование