Автор: Пользователь скрыл имя, 31 Января 2011 в 13:05, контрольная работа
Во второй половине ХХ в. в экономике развитых стран произошли радикальные изменения. Они были связаны с бурным наращиванием инвестиций, и портфельных в частности. На месте отдельных изолированных региональных финансовых рынков возник единый международный финансовый рынок. К традиционному набору финансовых инструментов (иностранная валюта, акции и облигации предприятий, государственные облигации) добавился постоянно растущий список новых производных инструментов - таких, как депозитарные расписки, форвардные контракты, фьючерсы на товары, опционы, варранты, фондовые индексы, свопы на процентные ставки, и т. п.
Введение 3
1. Суть теории портфельных инвестиций. 3
2. Модель оценки доходности финансовых активов 5
3. Основные постулаты и принципы теории. 9
4. Практическое применение и значимость теории. 10
Заключение 13
Список используемой литературы.
Ожидаемая премия за риск акций =
= бета х ожидаемая премия за рыночный риск.
r-rf= (rm-rf).
Инвестор всегда может получить ожидае-мую премию за риск (rт - r), комбинируя рыночный портфель и безриско-вые займы. Так, на хорошо функционирующем рынке никто не держит ак-ции, предлагающие премию за ожидаемый риск, меньше, чем (rт --r).
А как насчет других возможностей? Есть ли другие акции, которые обеспечивают более высокую ожидаемую премию за риск? Другими словами, существуют ли какие-либо акции, лежащие выше линии рынка ценных бумаг ? Если мы возьмем все акции в совокупности, мы получим рыночный пор-тфель. Следовательно, мы знаем, что акции в среднем располагаются на ли-нии. Так как ни одна не лежит ниже линии, то ни одна не может лежать и выше линии. Таким образом, каждая и любая акция должна лежать на линии рынка ценных бумаг и обеспечивать премию за ожидаемый риск, равную:
r-rf = p(rm- rf).
Рассмотрим четыре основных принципа выбора портфелей.
1. Инвесторы
предпочитают высокую
Если вы хотите знать предельное влияние акции на риск портфеля, вы должны учитывать не риск акции самой по себе, а ее вклад в риск пор-тфеля. Этот вклад зависит от чувствительности акции к изменениям стоимости портфеля.
Чувствительность акции к изменениям стоимости рыночного портфеля обозначается показателем бета. Следовательно, бета измеряет предель-ный вклад акции в риск рыночного портфеля.
Если инвесторы
могут брать займы или
Далее, если каждый держит рыночный портфель и если бета показывает вклад каждой ценной бумаги в риск рыночного портфеля, тогда не удивительно, что премия за риск, требуемая инвесторами, пропорциональна коэффициенту бета.
Сегодня модель Г. Марковица используется в основном на первом этапе формирования портфеля активов при распределении инвестированного капитала по их различным типам (акциям, облигациям, недвижимости и т. п.). Однофакторная модель У. Шарпа используется на втором этапе, когда капитал, инвестированный в определенный сегмент рынка активов, распределяется между отдельными конкретными активами, составляющими выбранный сегмент (то есть по конкретным акциям, облигациям и т. п.).
В 60-х годах ХХ в. работы У. Шарпа, а затем также Дж. Линтнера и Я. Моссина были посвящены, по сути, одному вопросу: "Предположим, что все инвесторы, владея одной и той же информацией, одинаково оценивают доходность и риск отдельных акций. Предположим также, что все они формируют свои оптимальные, с точки зрения теории Г. Марковица, портфели акций, исходя из индивидуальной предрасположенности к риску. Как в этом случае сложатся цены на рынке акций?". Таким образом, на САРМ можно смотреть как на макроэкономическое обобщение теории Г. Марковица. Основным результатом САРМ стало установление соотношения между доходностью и риском активов для равновесного рынка. При этом важным оказывается тот факт, что при выборе оптимального портфеля инвестор должен учитывать не "весь" риск, связанный с активами (риск по Г. Марковицу), а только его часть, названную "систематическим", то есть "недиверсифицированным", риском. Эта часть риска активов тесно связана с общим риском рынка в целом и количественно представлена коэффициентом "бета", введенным У. Шарпом в его модели. Другая его часть (так называемый "несистематический", то есть "диверсифицированный", риск) ликвидируется выбором соответствующего (оптимального) портфеля. Связь между доходностью и риском носит линейный характер, и тем самым привычное практическое правило "большая доходность означает большой риск" получает точное аналитическое обоснование.
В 1977 г. эта теория была подвергнута жесткой критике в работах Р. Ролла. Он высказал мнение, что САРМ нужно отбросить, поскольку ее в принципе нельзя эмпирически проверить. Несмотря на это, САРМ остается, вероятно, наиболее значительной и наиболее влиятельной современной финансовой теорией. Более того: на ее основе была разработана формула ценообразования на опционы, названная в честь американских ученых Ф. Блэка и М. Скоулза - первых, кто ее вывел.
Прежде чем выяснить суть этой формулы, кратко остановимся на экономической роли производных ценных бумаг - в частности, одной их разновидности - опциона. В отличие от акций и облигаций, выпускаемых с целью привлечения денежных средств, опционы покупают и продают фирмы, чтобы защититься от неблагоприятных изменений на финансовом рынке. Именно потому, что стоимость опционов является производной от стоимости других ценных бумаг, их называют "вторичными". Существование рынка вторичных ценных бумаг позволяет его участникам, ожидающим в будущем каких-то поступлений (или, наоборот, затрат), гарантировать себе определенный уровень прибыли или застраховаться от потерь, превышающих определенный уровень. В последние 20 лет такой рынок стремительно развивается во всем мире .
Любое вложение в опцион является более рисковым, чем вложение непосредственно в акции: ведь риск, связанный с ним, изменяется каждый раз, когда изменяется цена акции. Соответственно, ожидаемая норма дохода на опцион, на которую рассчитывают инвесторы, ежечасно изменяется в зависимости от изменения рыночной цены акции. Именно поэтому определение стоимости опционов при помощи стандартных формул казалось практически невозможным, а разработка техники точной оценки этой стоимости на протяжении многих лет была не по силам экономистам. Все предыдущие (с 1900 г.) попытки определить стоимость вторичных ценных бумаг были неудачными из-за огромной проблемы - невозможности правильно исчислить премию за риск (доход на рисковые вложения).
М. Скоулз и Ф. Блэк совершили прорыв в этой области, разработав метод определения стоимости опциона, не требующий использования конкретной величины премии за риск. Однако это не означает, что премии за риск нет: просто она включена в цену акции. Именно эту идею оба ученых впервые обосновали в работе "Ценообразование на опционы и пассивы корпораций" (1973 г.). В этот период они тесно сотрудничали с Р. Мертоном, который также занимался проблемой оценки опционов. Он внес ряд предложений, которые улучшали упомянутую статью. В частности, соглашаясь с предположением относительно непрерывности осуществления операций с опционами и акциями, Р. Мертон предложил поддерживать между ними такое соотношение, которое является полностью безрисковым. Он придумал важное обобщение, согласно которому рыночное равновесие не является обязательным условием для оценки опциона, будучи для нее достаточным условием, если нет возможностей осуществить арбитражные операции. Опубликованная им статья "Теория рационального ценообразования опционов" (1973 г.) тоже включала формулу Блэка - Скоулза и некоторые обобщения (например, он предположил стохастичность процентной ставки).
Таким образом, эта формула оценивает "справедливую стоимость" опциона. Она полезна при принятии инвестиционных решений, но не гарантирует прибыли на опционных торгах. Концептуально формулу Блэка - Скоулза можно объяснить так: цена опциона "колл" = (ожидаемая цена акции) - (ожидаемая стоимость выполнения опциона). Она имеет такой математический вид:
C = SN(d) -
Le -rt N(d -vt)
где С - теоретическая оценка опциона
"колл" (которую также называют "премией"),
S - текущая цена акции, N - количество
акций, L - страйк опциона, t - время
до экспирации (конца действия) опциона
(в годах), q - среднее квадратичное
отклонение курса акции (корень из суммы
квадратов отклонений), r - безрисковая
процентная ставка, е - основа натурального
логарифма (2,71828), где d - дивидендная
доходность акции, ln - натуральный логарифм.
Эта формула основывалась на возможности осуществления безрисковой сделки с одновременным использованием акции и выписанным на нее опционом. Стоимость (цена) такой сделки должна совпадать со стоимостью безрисковых активов на рынке, а поскольку цена акции со временем изменяется, то и стоимость выписанного опциона, обеспечивающего безрисковую сделку, тоже должна соответственно изменяться. Из этих предписаний можно получить вероятностную оценку стоимости опциона.
3. Основные постулаты и принципы теории портфеля.
Г. Марковиц утверждает, что инвестор должен обосновать свое решение относительно выбора оптимального портфеля исключительно ожидаемой доходностью и стандартным отклонением доходности. Это означает, что инвестор должен оценить ожидаемую доходность и стандартное отклонение доходности каждого из портфелей, а затем из них выбрать "лучший", базируясь на соотношении этих двух параметров. При этом интуиция играет определяющую роль. Ожидаемая доходность может быть представлена как мера потенциального вознаграждения, связанная с конкретным портфелем, а стандартное отклонение доходности - как мера риска, связанная с этим портфелем. Таким образом, после того, как каждый портфель исследован с точки зрения потенциальных вознаграждения и риска, инвестор должен выбрать портфель, который является для него наиболее подходящим.
Основные выводы теории портфельных инвестиций, можно сформулировать так:
1) эффективное
множество содержат те
2) предполагается, что инвестор выбирает оптимальный портфель из портфелей, составляющих эффективное множество;
3) оптимальный
портфель инвестора
4) как правило, диверсификация влечет за собой уменьшение риска, поскольку в общем случае стандартное отклонение доходности портфеля будет меньше, чем средневзвешенные стандартные отклонения доходности ценных бумаг, которые составляют этот портфель;
5) соотношение доходности ценной бумаги и доходности на индекс рынка известно как рыночная модель;
6) доходность
на индекс рынка не отражает
доходности ценной бумаги
7) в соответствии с рыночной моделью, общий риск ценной бумаги состоит из рыночного риска и собственного риска;
8) диверсификация
приводит к усреднению
9) диверсификация
может значительно снизить
Таким образом, можно сформулировать основные постулаты, на которых построена современная теория портфельных инвестиций:
1. Рынок состоит
из конечного числа активов,
доходность которых для
2. Инвестор способен, например, исходя из статистических данных, получить оценку ожидаемых (средних) значений доходности и их попарных ковариаций - возможностей диверсификации риска.
3. Инвестор может
формировать разные допустимые (для
данной модели) портфели, доходность
которых также является
4. Сопоставление выбираемых портфелей основывается только на двух критериях - средней доходности и риске.
5. Инвестор не
предрасположен к риску в том
смысле, что из двух портфелей
с одинаковой доходностью он
обязательно предпочтет
Центральной проблемой в теории портфельных инвестиций является выбор оптимального портфеля, то есть определение набора активов с наивысшим уровнем доходности при наименьшем или заданном уровне инвестиционного риска. Такой подход является "многомерным" как по количеству привлеченных в анализ активов, так и по учтенным характеристикам.
Информация о работе Теория портфеля Гарри Марковица и модель оценки доходности финансовых активов