Теория портфеля Гарри Марковица и модель оценки доходности финансовых активов

Автор: Пользователь скрыл имя, 31 Января 2011 в 13:05, контрольная работа

Описание работы

Во второй половине ХХ в. в экономике развитых стран произошли радикальные изменения. Они были связаны с бурным наращиванием инвестиций, и портфельных в частности. На месте отдельных изолированных региональных финансовых рынков возник единый международный финансовый рынок. К традиционному набору финансовых инструментов (иностранная валюта, акции и облигации предприятий, государственные облигации) добавился постоянно растущий список новых производных инструментов - таких, как депозитарные расписки, форвардные контракты, фьючерсы на товары, опционы, варранты, фондовые индексы, свопы на процентные ставки, и т. п.

Содержание

Введение 3
1. Суть теории портфельных инвестиций. 3
2. Модель оценки доходности финансовых активов 5
3. Основные постулаты и принципы теории. 9
4. Практическое применение и значимость теории. 10
Заключение 13
Список используемой литературы.

Работа содержит 1 файл

КОНТРОЛЬНАЯ РАБОТА.doc

— 110.50 Кб (Скачать)

КОНТРОЛЬНАЯ РАБОТА

по курсу "Современные концепции финансового  менеджмента"

на  тему:

"Теория  портфеля Гарри  Марковица и модель  оценки доходности  финансовых активов"

специальность «Финансы и кредит»

Студент:

Группа  ФиК-64/в

Короткова Л.Л.

Преподаватель:

Иконникова А.В.

Новосибирск 2006

Содержание.

 
  Введение 3  
1. Суть теории портфельных инвестиций. 3  
2. Модель оценки доходности финансовых активов 5  
3. Основные постулаты  и принципы теории. 9  
4. Практическое  применение и значимость теории. 10  
  Заключение 13  
  Список используемой литературы. 14  
       

Введение.

Во второй половине ХХ в. в экономике развитых стран  произошли радикальные изменения. Они были связаны с бурным наращиванием инвестиций, и портфельных в частности. На месте отдельных изолированных региональных финансовых рынков возник единый международный финансовый рынок. К традиционному набору финансовых инструментов (иностранная валюта, акции и облигации предприятий, государственные облигации) добавился постоянно растущий список новых производных инструментов - таких, как депозитарные расписки, форвардные контракты, фьючерсы на товары, опционы, варранты, фондовые индексы, свопы на процентные ставки, и т. п. Эти инструменты позволяют реализовать более сложные и более тонкие стратегии управления доходностью и риском финансовых сделок, которые отвечают индивидуальным потребностям инвесторов, а также требованиям управляющих активами, спекулянтов и игроков на финансовом рынке.

Традиционный  подход в инвестировании, преобладавший  до появления современной теории портфельных инвестиций, имел два существенных недостатка. Во-первых, в нем основное внимание уделялось анализу поведения отдельных активов (акций, облигаций). Во-вторых, основной характеристикой активов в нем была исключительно доходность, тогда как другой фактор - риск - не получал четкой оценки при инвестиционных решениях. Нынешний уровень разработки теории портфельных инвестиций преодолевает эти недостатки. Формированием такого нового подхода фактически завершился длительный период (еще с конца 20-х годов ХХ в.), названный в финансовой теории "первоначальным этапом развития теории портфельных инвестиций".

1.Суть  теории портфельных  инвестиций.

Современная теория портфельных инвестиций берет свое начало из небольшой статьи Г. Марковица "Выбор портфеля". В ней он предложил математическую модель формирования оптимального портфеля ценных бумаг, а также привел методы построения таких портфелей при определенных условиях. Рассмотрев общую практику диверсификации портфеля, ученый показал, как инвестор может снизить его риск путем выбора некоррелируемых акций.

Основной заслугой Г. Марковица является предложенная им в этой статье теоретико-вероятностная  формализация понятий "доходность" и "риск". В его модели для исчисления соотношения между риском инвестиций и их ожидаемой доходностью используется распределение вероятностей. Ожидаемая доходность портфеля ценных бумаг определяется как среднее значение распределения вероятностей, а риск - как стандартное отклонение возможных значений доходности от ожидаемого.

Для примера  рассмотрим некую компанию "Мир". Предположим, вы купили ее акции по цене 100 грн. каждая и планируете владеть  ими в течение года. Доходность (r) можно представить как сумму двух компонентов - дивидендной доходности и доходности в результате изменения курса акций: r = rдивид. + r ценов.

Предположим: купив акции компании "Мир", вы рассчитываете, что дивидендный  компонент доходности составит 3%, а  ценовой - 7%, следовательно - ожидаемая  ставка доходности будет равна 10% (r = 3% + 7% = 10%).

Распределение вероятностей ставок  
доходности акций компании "Мир"

 
Состояния экономики Ставки доход-ности  акций (%) Вероятности  
Подъем…......……..... 30 0,20  
Неизменное  состояние 10 0,60  
Спад........……........... -10 0,20  
       

Теперь предположим, что в зависимости от состояния экономики акции компании "Мир" могут принести разную доходность. Если в следующем году экономика будет на подъеме, то объемы продаж и прибыль компании будут повышаться, а потому и ставка доходности инвестиций в акции "Мира" будет равна 30%. Если же в экономике будет спад, то ставка доходности составит 10%, то есть акционер этой компании понесет убытки. Если экономическая ситуация останется неизменной, то фактическая доходность ее акций составит 10%. Оценка вероятностей ставок доходности акций компании "Мир" для каждого из рассмотренных в нашем примере состояний экономики показана в таблице.

Приведенное в  таблице распределение вероятностей означает: если вы вложите деньги в  акции компании "Мир", то получите, скорее всего, 10-процентную их доходность, вероятность чего в 3 раза превышает вероятность получения двух других уровней доходности - 10% и 30%. Ожидаемая ставка доходности определяется как:

E(r= P1r+ P2r+ … + Pnrn = S Piri .

Применив эту  формулу для предложенного случая, мы обнаружим, что ожидаемая ставка доходности акций компании "Мир" равна:

E(r0,2*30% + 0,6*10% + 0,2*(-10%) = 10%.

Чем больше стандартное  отклонение доходности, тем выше показатель изменчивости цен на акции. Стандартное  отклонение доходности для безрисковых инвестиций, которые дадут 10% доходности, равно 0.

Результаты исследований, полученные Г. Марковицем, сразу позволили  перевести задачу выбора оптимальной  инвестиционной стратегии на точный математический язык. Именно он первым привлек внимание к общепринятой практике диверсификации портфеля и точно показал, как инвесторы могут уменьшить стандартное отклонение его доходности, выбирая акции, цены на которые изменяются по-разному. С математической точки зрения, полученная оптимизационная стратегия относится к классу задач квадратичной оптимизации при линейных ограничениях. До сих пор, вместе с задачами линейного программирования, это один из наиболее изученных классов оптимизационных задач, для которых разработано большое количество достаточно эффективных алгоритмов.

Г. Марковиц на этом не остановился - он продолжил разработку основных принципов формирования портфеля. Эти принципы послужили основой  для многих работ, описывающих связь  между риском и доходностью. Однако его работы не привлекли особого  внимания экономистов - теоретиков и практиков. Для 50-х годов ХХ в. само по себе применение теории вероятности к финансовой теории было достаточно необычным делом. К тому же неразвитость вычислительной техники, а также сложность предложенных Г. Марковицем алгоритмов, процедур и формул не позволили осуществить фактическую реализацию его идей. Не случайно заслуги ученого были оценены значительно позже, чем опубликованы его работы, а Нобелевская премия ему присуждена только в 1990 г.

Влияние портфельной  теории Г. Марковица значительно усилилось после появления в конце 50-х - в начале 60-х годов ХХ в. работ Дж. Тобина по аналогичным проблемам. Здесь следует отметить некоторые различия между подходами Г. Марковица и Дж. Тобина. Первый из этих подходов лежит в русле микроэкономического анализа, поскольку акцентирует внимание на поведении отдельного инвестора, который формирует оптимальный, с его точки зрения, портфель на базе собственной оценки доходности и риска выбранных активов. К тому же первоначально эта модель касалась в основном портфеля акций, то есть рисковых активов. Дж. Тобин тоже предложил включить в анализ безрисковые активы (например, государственные облигации). По сути, его подход является макроэкономическим, поскольку в данном случае главным объектом изучения является распределение совокупного капитала в экономике на две формы: наличную (денежную) и неналичную (в виде ценных бумаг). В работах Г. Марковица акцент делался не на экономическом анализе исходных постулатов теории, а на математическом анализе их последствий и разработке алгоритмов решения оптимизационных задач. В подходе Дж. Тобина основной темой становится анализ факторов, вынуждающих инвесторов формировать портфель активов, а не держать капитал в какой-то одной (например, наличной) форме. Кроме того, Дж. Тобин проанализировал адекватность количественных характеристик активов и портфеля, которые являются исходными данными в теории Г. Марковица. Возможно, поэтому Дж. Тобин получил Нобелевскую премию на 9 лет раньше, чем Г. Марковиц.

2. Модель оценки доходности финансовых активов.

С 1964 г. появляются новые работы, открывшие следующий  этап в развитии инвестиционной теории, связанный с так называемой "моделью оценки капитальных активов" (или САРМ - от английского capital asset pricing model). Учеником Г. Марковица У. Шарпом была разработана модель рынка капиталов . Формулируя ее, он понимал, что абсолютно надежных акций или облигаций не бывает. Все они в той или иной степени связаны с риском для корпорации: она может получить большой доход или остаться без ничего. Развивая подход Г. Марковица, У. Шарп разделил теорию портфеля ценных бумаг на две части: первая - систематический (или рыночный) риск для активов акций, вторая - несистематический. Для обычной акции систематический риск всегда связан с изменениями в стоимости ценных бумаг, находящихся в обращении на рынке. Иначе говоря, доходность одной акции постоянно колеблется вокруг средней доходности всего актива ценных бумаг. Этого никак не избежать, поскольку действует слепой механизм рынка.

Несистематический риск связан с влиянием всех остальных факторов, специфических для корпорации, выпускающей в обращение ценные бумаги. Определив специальные коэффициенты реакции цен акций или облигаций на изменения рыночной конъюнктуры (знаменитые "альфу" и "бету" 3), У. Шарп разработал формулу расчета сравнительной меры риска ценных бумаг на основе "линии эффективности рынка заемного капитала".

Важным моментом систематического риска является то, что увеличение количества акций  или облигаций не способно ликвидировать  его. Однако растущая покупка ценных бумаг может повлечь за собой устранение несистематического риска. Отсюда получается, что вкладчик не может избежать риска, связанного с колебаниями конъюнктуры фондового рынка. Задача при формировании рыночного портфеля заключается в уменьшении риска путем приобретения различных ценных бумаг. И делается это так, чтобы факторы, специфические для отдельных корпораций, уравновешивали друг друга. Благодаря этому доходность портфеля приближается к средней для всего рынка.

На основе этой модели У. Шарп предложил упрощенный метод выбора оптимального портфеля, который сводил задачу квадратичной оптимизации к линейной. В более простых случаях (то есть для небольших размерностей) эта задача могла быть решена практически "вручную". Такое упрощение сделало методы портфельной оптимизации применимыми на практике. В 70-х годах ХХ в. развитие программирования, а также совершенствование статистической техники оценки коэффициентов "альфа" и "бета" отдельных ценных бумаг и индекса рынка в целом привели к появлению первых пакетов программ для решения задач управления портфелем ценных бумаг.

Разница между  доходностью рыночного порт-феля и процентной ставкой называется премией за рыночный риск.

Выводы У. Шарпа  стали известны как модели оценки долгосрочных активов, базирующиеся на предположении, что на конкурентном рынке ожидаемая премия за риск изменяется прямо пропорционально коэффициенту "бета".

Это означает, что  если схематически представить инвестиции на рисунке, то все ин-вестиции должны располагаться вдоль наклонной линии, называемой лини-ей рынка ценных бумаг. Ожидаемая премия за риск инвестиций, бета которых равна 0,5, следовательно, составляет половину ожидаемой премии за рыноч-ный риск; ожидаемая премия за риск инвестиций с бетой, равной 2,0, в два раза превышает ожидаемую премию за рыночный риск. Мы можем предста-вить эту взаимосвязь в следующем виде:

Информация о работе Теория портфеля Гарри Марковица и модель оценки доходности финансовых активов