Автор: Пользователь скрыл имя, 20 Ноября 2011 в 12:22, лекция
Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно [1]
Предисловие
Глава 1. Структура современной эконометрики
1.1. Эконометрика сегодня
1.2. Эконометрика = экономика + метрика
1.3. Структура эконометрики
1.4. Специфика экономических данных
1.5. Нечисловые экономические величины
1.6. Статистика интервальных данных - научное направление на стыке метрологии и математической статистики
1.7. Эконометрические модели
1.8. Применения эконометрических методов
1.9. Эконометрика как область научно-практической деятельности
1.10. Эконометрические методы в практической и учебной деятельности
Цитированная литература
Глава 2. Выборочные исследования
2.1. Построение выборочной функции спроса
2.2. Маркетинговые опросы потребителей
2.3. Проверка однородности двух биномиальных выборок
Цитированная литература
Глава 3. Основы теории измерений
3.1. Основные шкалы измерения
3.2. Инвариантные алгоритмы и средние величины
3.3. Средние величины в порядковой шкале
3.4. Средние по Колмогорову
Цитированная литература
Глава 4. Статистический анализ числовых величин (непараметрическая статистика)
4.1. Часто ли распределение результатов наблюдений является нормальным?
4.2. Неустойчивость параметрических методов отбраковки резко выделяющихся результатов наблюдений
4.3. Непараметрическое доверительное оценивание характеристик распределения
4.4. О проверке однородности двух независимых выборок
4.5. Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?
4.6. Состоятельные критерии проверки однородности для независимых выборок
4.7. Методы проверки однородности для связанных выборок
Цитированная литература
Глава 5. Многомерный статистический анализ
5.1. Оценивание линейной прогностической функции
5.2. Основы линейного регрессионного анализа
5.3. Основные понятия теории классификации
5.4. Эконометрика классификации
Цитированная литература
Глава 6. Эконометрика временных рядов
6.1. Модели стационарных и нестационарных временных рядов, их идентификация
6.2. Системы эконометрических уравнений
6.3. Оценивание длины периоды и периодической составляющей
6.4. Метод ЖОК оценки результатов взаимовлияний факторов
Цитированная литература
Глава 7. Эконометрический анализ инфляции
7.1. Определение индекса инфляции
7.2. Практически используемые потребительские корзины и соответствующие индексы инфляции
7.3. Свойства индексов инфляции
7.4. Возможности использования индекса инфляции в экономических расчетах
7.5. Динамика цен на продовольственные товары в Москве и Московской области
Цитированная литература
Глава 8. Статистика нечисловых данных
8.1. Объекты нечисловой природы
8.2. Вероятностные модели конкретных видов объектов нечисловой природы
8.3. Структура статистики объектов нечисловой природы
8.4. Законы больших чисел и состоятельность статистических оценок в пространствах произвольной природы
8.5. Непараметрические оценки плотности в пространствах произвольной природы
Цитированная литература
Глава 9. Статистика интервальных данных
9.1. Основные идеи статистики интервальных данных
9.2. Примеры статистического анализа интервальных данных
9.3. Статистика интервальных данных и оценки погрешностей характеристик финансовых потоков инвестиционных проектов
Цитированная литература
Глава 10. Проблемы устойчивости эконометрических процедур
10.1. Общая схема устойчивости
10.2. Робастность статистических процедур
10.3. Устойчивость по отношению к объему выборки
10.4. Устойчивость по отношению к горизонту планирования
Цитированная литература
Глава 11. Эконометрические информационные технологии
11.1. Проблема множественных проверок статистических гипотез
11.2. Проблемы разработки и обоснования статистических технологий
11.3. Методы статистических испытаний (Монте-Карло) и датчики псевдослучайных чисел
11.4. Методы размножения выборок (бутстреп-методы)
11.5.Эконометрика в контроллинге
Цитированная литература
Глава 12. Эконометрические методы проведения экспертных исследований и анализа оценок экспертов
12.1. Примеры процедур экспертных оценок
12.2. Основные стадии экспертного опроса
12.3. Подбор экспертов
12.4. О разработке регламента проведения сбора и анализа экспертных мнений
12.5. Методы средних баллов
12.6. Метод согласования кластеризованных ранжировок
12.7. Математические методы анализа экспертных оценок
Цитированная литература
Глава 13. Эконометрические методы управления качеством и сертификации продукции
13.1. Основы статистического контроля качества продукции
13.2. Асимптотическая теория одноступенчатых планов статистического контроля
13.3. Некоторые практические вопросы статистического контроля качества продукции и услуг
13.4. Всегда ли нужен контроль качества продукции?
13.5. Статистический контроль по двум альтернативным признакам и метод проверки их независимости по совокупности малых выборок
13.6. Эконометрика качества и сертификация
Цитированная литература
Глава 14. Эконометрика прогнозирования и риска
14.1. Методы социально-экономического прогнозирования
14.2. Основные идеи технологии сценарных экспертных прогнозов
14.3. Различные виды рисков
14.4. Подходы к управлению рисками
Цитированная литература
Глава 15. Современные эконометрические методы
15.1. О развитии эконометрических методов
15.2. Точки роста
15.3. О некоторых нерешенных вопросах эконометрики и прикладной статистики
15.4. Высокие статистические технологии и эконометрика
Содержание
Предисловие Глава
1. Структура современной
эконометрики Глава
2. Выборочные исследования Глава
3. Основы теории измерений Глава
4. Статистический анализ
числовых величин (непараметрическая
статистика) Глава
5. Многомерный статистический
анализ Глава
6. Эконометрика временных
рядов Глава
7. Эконометрический
анализ инфляции Глава
8. Статистика нечисловых
данных Глава
9. Статистика интервальных
данных Глава
10. Проблемы устойчивости
эконометрических процедур Глава
11. Эконометрические
информационные технологии Глава
12. Эконометрические
методы проведения экспертных
исследований и анализа
оценок экспертов Глава
13. Эконометрические
методы управления качеством
и сертификации продукции Глава
14. Эконометрика прогнозирования
и риска Глава
15. Современные эконометрические
методы Приложение
1. |
Глава
1. Структура современной
эконометрики
1.1.Эконометрика сегодня Статистические
(эконометрические) методы используются
в зарубежных и отечественных
экономических и технико- Публикации по
новым статистическим методам, по их
применениям в технико- Однако необходимо констатировать, что для большинства менеджеров, экономистов и инженеров эконометрика является экзотикой. Это объясняется тем, что в вузах современным статистическим методам почти не учат. Во всяком случае, по состоянию на 2001 г. каждый квалифицированный специалист в этой области - самоучка. Этому выводу не мешает то, что в вузовских программах обычно есть два курса, связанных со статистическими методами. Один из них - "Теория вероятностей и математическая статистика". Этот небольшой курс читают специалисты с математических кафедр и успевают дать лишь общее представление об основных понятиях математической статистики. Кроме того, внимание математиков обычно сосредоточено на внутриматематических проблемах, их больше интересует доказательства теорем, а не применение современных статистических методов в задачах экономики и менеджмента. Другой курс - "Статистика" или "Общая теория статистики", входящий в стандартный блок экономических дисциплин. Его читают экономисты, не всегда хорошо подкованные в математике. Фактически он является введением в прикладную статистику и содержит первые начала эконометрических методов (по состоянию на 1900 г.). Учебники по "Общей теории статистики" являются неисчерпаемой копилкой математико-статистических ошибок, они порождают поток публикаций, разоблачающих эти ошибки (см., например, [2]). Ничего удивительного в этом нет - такие учебники писали и пишут высококвалифицированные в своей области экономисты, однако они, как правило, плохо знают математику. Эконометрика (как учебный предмет) призвана, опираясь на два названных вводных курса, вооружить экономиста, менеджера, инженера современным эконометрическим инструментарием, разработанным за последние 50-70 лет. Не владея эконометрикой, отечественный специалист - менеджер и инженер - оказывается неконкурентоспособным по сравнению с зарубежным. Во многих странах мира - Японии и США, Франции и Швейцарии, Перу и Ботсване и др. - статистическим методам обучают в средней школе, ЮНЕСКО постоянно проводят конференции по вопросам такого обучения [3] . В СССР и СЭВ, а теперь - по плохой традиции - и в России игнорируют этот предмет в средней школе и лишь слегка затрагивают его в высшей. Результат на рынке труда очевиден - снижение конкурентоспособности специалистов. Обсудим сложившуюся
ситуацию, уделив основное внимание статистическим
методам в экономических и
технико-экономических |
Глава 1. Структура современной эконометрики 1.2. Эконометрика = экономика + метрика Сначала необходимо выяснить, что обычно понимают под эконометрикой. Затем обсудим современное состояние эконометрики как научно-практической дисциплины. Во вводных монографиях по экономической теории, как правило, выделяют в качестве ее разделов макроэкономику, микроэкономику и эконометрику. При этом о макроэкономике и микроэкономике обычно подробно рассказывается в тех же монографиях или в дальнейших учебных пособиях, в то время как об эконометрике узнать что-либо самостоятельно российскому студенту почти невозможно. Лишь в последнее время появились отдельные курсы в нескольких московских экономических вузах и соответствующие учебники, увы, трактующие ее крайне узко. В одном из наиболее распространенных в России вводном курсе западной экономической теории сказано: "Статистический анализ экономических данных называется эконометрикой, что буквально означает: наука об экономических измерениях" [4, с.25]. Действительно, термин "эконометрика" состоит из двух частей: "эконо-" - от "экономика" и "-метрика" - от "измерение". Эконометрика (в другом русско- и англоязычном варианте названия этой дисциплины - эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрика (или биометрия), технометрика, наукометрия, психометрика, хемометрика (наука об измерениях и применении статистических методов в химии). Особняком стоит социометрия - этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, т.е. за небольшой частью такой дисциплины, как статистический анализ в социологии. Эконометрика, как и другие "метрики", посвящена развитию и применению статистических методов в конкретной области науки и практики - в экономике, прежде всего в теории и практике менеджмента. В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое - Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия), Publications Econometriques (Франция). Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, которая стараниями О.Ланге и его коллег покрыта сетью эконометрических "институтов" (в российской терминологии - кафедр вузов). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины. Кратко рассмотрим в настоящей главе современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях. | ||
Глава
1. Структура современной
эконометрики
1.3. Структура эконометрики В эконометрике, как дисциплине на стыке экономики (включая менеджмент) и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы): а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных; б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики; в) применение эконометрических
методов и моделей для Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида в) основное - успешное решение задач конкретной области экономики. Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным (см., например, монографию [5]), с другой - результаты представляют интерес не для всей экономической науки, а лишь для некоторого направления в ней. Прикладная статистика - другая область знаний, чем математическая статистика. Это четко проявляется и при преподавании. Курс математической статистики состоит в основном из доказательств теорем, как и соответствующие учебные пособия. В курсах прикладной статистики и эконометрики основное - методология анализа данных и алгоритмы расчетов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе). Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации (см., например, статью [6]). Прикладная статистика - методическая дисциплина, являющаяся центром статистики. При применении к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа "статистика в промышленности", "статистика в медицине" и др. С этой точки зрения эконометрика - это "статистические методы в экономике". Математическая статистика играет роль математического фундамента для прикладной статистики. К настоящему времени очевидно четко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. В настоящее время исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Поток новых математических результатов (теорем) не ослабевает, но новые практические рекомендации по обработке статистических данных при этом не появляются. Можно сказать, что математическая статистика как научное направление замкнулась внутри себя. Сам термин "прикладная статистика", используемый с 1960-х годов, возник как реакция на описанную выше тенденцию. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, т.е. путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента. Рассматриваемое соотношение математической и прикладной статистик отнюдь не являются исключением. Как правило, математические дисциплины проходят в своем развитии ряд этапов. Вначале в какой-либо прикладной области возникает необходимость в применении математических методов и накапливаются соответствующие эмпирические приемы (для геометрии это - "измерение земли" в т.н. Древнем Египте). Затем возникает математическая дисциплина со своей аксиоматикой (для геометрии это - время Евклида). Затем идет внутриматематическое развитие и преподавание (считается, что большинство результатов элементарной геометрии получено учителями гимназий в XIX в.). При этом на запросы исходной прикладной области перестают обращать внимание, и та порождает новые научные дисциплины (сейчас "измерением земли" занимается не геометрия, а геодезия и картография). Затем научный интерес к исходной дисциплине иссякает, но преподавание по традиции продолжается (элементарная геометрия до сих пор изучается в средней школе, хотя трудно понять, в каких практических задачах может понадобиться, например, теорема о том, что высоты треугольника пересекаются в одной точке). Следующий этап - окончательное вытеснение дисциплины из реальной жизни в историю науки (объем преподавания элементарной геометрии в настоящее время постепенно сокращается, в частности, ей все меньше уделяется внимания на вступительных экзаменах в вузах). К интеллектуальным дисциплинам, закончившим свой жизненный путь, относится средневековая схоластика. Как отмечает проф. МГУ им. М.В. Ломоносова В.Н.Тутубалин [7], теория вероятностей и математическая статистика успешно двигаются по ее пути - вслед за элементарной геометрией. Подведем итог. Хотя статистические данные собираются и анализируются с незапамятных времен (см., например, Книгу Чисел в Ветхом Завете), современная математическая статистика как наука была создана, по общему мнению специалистов, сравнительно недавно - в первой половине ХХ в. Именно тогда были разработаны основные идеи и получены результаты, излагаемые ныне в учебных курсах математической статистики. После чего специалисты по математической статистике занялись внутриматематическими проблемами, а для теоретического обслуживания проблем практического анализа статистических данных стала формироваться новая дисциплина - прикладная статистика. (Ее центральным печатным органом в нашей стране является упомянутая выше секция "Математические методы исследования" журнала "Заводская лаборатория", где за последние 30 лет опубликовано более 1000 статей по прикладной статистике.) В настоящее
время статистическая обработка
данных проводится, как правило, с
помощью соответствующих Ситуация с
внедрением современных статистических
(эконометрических) методов на предприятиях
и в организациях различных отраслей
народного хозяйства | ||
Глава
1. Структура современной
эконометрики
1.4.Специфика экономических данных Для анализа
экономических данных могут применяться
все разделы прикладной статистики, а
именно: Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это - числа, во второй - вектора, в третьей - функции, в четвертой - объекты нечисловой природы, т.е. элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты (см. главы 8 и 9 ниже).. Как и для применений статистических методов в иных областях, в эконометрике решаются задачи описания данных (в том числе усреднения), оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др. Однако в некоторых
отношениях экономические данные отличаются
от технических или Многие экономические
показатели неотрицательны. Значит, их
надо описывать неотрицательными случайными
величинами. А вот нормальные распределения
принципиально не подходят, поскольку
для них вероятность Экономические
процессы развиваются во времени, поэтому
большое место в эконометрике
занимают вопросы анализа и В экономике доля нечисловых данных существенно выше, чем в технике и технологии, соответственно больше применений для статистики объектов нечисловой природы (ниже разберем это утверждение подробнее). Количество изучаемых
объектов в экономическом исследовании
часто ограничено в принципе, поэтому
обоснование вероятностных Поэтому в эконометрике часто применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных. Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации. Итак, специфика
эконометрики проявляется не в перечне
применяемых для анализа | ||
Глава
1. Структура современной
эконометрики
1.5. Нечисловые экономические величины В теоретических
и практических задачах экономики
и менеджмента постоянно Действительно, можно ли считать, что существует рыночная цена на некоторый товар, выраженная числом? Рассмотрим всем привычный товар - хлеб. Для определенности рассмотрим стандартный батон белого хлеба, который стоил 25 копеек в 1990 г. В настоящее время (июнь 2001 г.) в различных торговых точках Москвы его можно купить по ценам от 6 руб. 50 коп. до 7 руб. 30 коп. Сотрудники Института высоких статистических технологий и эконометрики в течение нескольких лет собирала информацию о ценах на 35 продовольственных товаров в 11 "точках" Москвы и Подмосковья (итоги подведены в статье [9]), и максимальная из отмеченных цен превышала минимальную, как правило, на 30-50%. Можно говорить о цене товара при конкретном акте купли-продажи, при покупке в конкретном магазине, но нельзя говорить о конкретном числовом значении рыночной цены товара. Так, говорить о "рыночной цене" конкретной квартиры (не в новостройке) бессмысленно. Цена выявится только в результате соглашения продавца и покупателе при совершении акта купли-продажи. С другой стороны, полностью отказываться от этого укоренившегося в литературе понятия нецелесообразно. Мы предлагаем принять, что рыночная цена - объект нечисловой природы, и описывать ее для стандартного батона белого хлеба, например, в виде интервала [6,50; 7,30] руб. Анализируя реальные данные, убеждаемся, что интервальный характер имеют рыночные цены на двигатели, черный и цветной металл, сплавы, электроэнергию, нефть, бензин, автоприборы и автомобили, трактора, различные виды приводной техники и другие промышленные товары, точно так же как и на разнообразные услуги. Цены зависят от конкретного договора между поставщиком и потребителем. Часто появляется дополнительный мешающий фактор - инфляция. Так, с сентября 1995 г. по январь 1996 г. доллар США подешевел в нашей стране почти в 2 раза (если сравнивать по покупательной способности в области продовольственных товаров). Нечисловой характер имеют не только цены. При обсуждении понятия "прибыль предприятия" начнем с очевидной бессмысленности выражения "максимизация прибыли" без указания интервала времени, за который прибыль максимизируется. Только задав интервал времени, можно принять оптимальные решения и рассчитать ожидаемую прибыль. Ясно, что оптимальные решения зависят от интервала планирования. Известная в экономической теории проблема "горизонта планирования" состоит в том, что оптимальное поведение зависит от того, на какое время вперед планируют, а выбор этого горизонта не имеет рационального обоснования. В монографии [5] рассмотрен ряд примеров указанной зависимости и предложено использовать асимптотически оптимальные планы. Дополнительная сложность состоит в том, что будущая прибыль не может быть определена точно, а потому сама должна описываться как объект нечисловой природы. Итак, задача "максимизации прибыли" может приобрести точный смысл, например, лишь как максимизация нечеткой прибыли на нечетком интервале времени. Оптимизация в случае нечетких переменных рассматривалась в литературе (см., например, [10]), однако пока не получила широкого практического внедрения. Для приведения экономических величин к одному моменту времени (к сопоставимым ценам) используются индексы инфляции, в другой терминологии, дефляторы. Рассчитывают их с помощью тех или иных потребительских корзин. При этом на нечеткость "рыночных цен" товаров накладывается произвол в выборе состава потребительской корзины и объемов потребления. Теоретический анализ этой ситуации привел нобелевского лауреата по экономике В.В.Леонтьева к выводу о принципиальной невозможности сравнения экономических величин, относящихся к различным моментам времени [11]. Возможный выход состоит в задании индекса инфляции в интервальном виде. Так, расчеты по собранным Институтом высоких статистических технологий и эконометрики данным о ценах показывают, что для Москвы индекс инфляции с марта 1991 г. по апрель 1999 г. описывается интервалом [21,5; 24,0] (при использовании деноминированных рублей). Еще более размыты обобщенные макроэкономические показатели типа "валового внутреннего продукта" (ВВП), особенно при их сравнении по годам и странам. По мнению известного экономиста О.Моргенштерна [12] подобные макроэкономические показатели могут быть определены лишь с точностью 5-10%. Однако, если пользоваться одной и той же методикой расчета, то можно заметить и изменения в 0,1 %. Проблема в том, что сама методика может вызывать сомнения. Например, по применяемой Госкомстатом РФ "системе национальных счетов" банковские услуги составляют 13% ВВП. С точки зрения здравого смысла это - абсурдно высокая величина. Она объясняется тем, что, например, выдача кредита в 1 миллион рублей рассматривается как услуга стоимостью в 1 миллион рублей, эквивалентная выпечке и продаже 150 000 батонов хлеба. При всей высокой оценке тяжкого труда банковских боссов, клерков и охранников трудозатраты крестьян, мукомолов, пекарей, транспортников и продавцов 150 000 батонов хлеба, очевидно, несоизмеримо выше. Нечеткость в неявной форме присутствует и в натуральных показателях. Пусть, например, выпущена партия из 1000 автомашин определенной марки. Нечеткость, связанная с этой партией, состоит в неопределенности реального срока службы автомашин, полезных и вредных эффектов от их эксплуатации. Для снятия этих неопределенностей необходимо, в частности, экономически оценить потери от гибели людей в автокатастрофах. Сколько стоит жизнь человека? При всем уважении к оценкам страховых компаний сама постановка этого вопроса вызывает неловкость. Многие этические и религиозные учения исходят из бесценности человеческой жизни. Из-за принципиальной недопустимости выражения стоимости человеческой жизни в денежных единицах не получили распространения, в частности, методы статистического контроля качества, основанные на учете народнохозяйственного ущерба от пропуска дефектных изделий при контроле. Более подробно рассмотрим проблемы управления инвестиционными процессами. Одна из них - проблема сравнения инвестиционных проектов. С чисто финансовой точки зрения такой проект - это финансовый поток (cash flow), другими словами, поток платежей и поступлений, т.е. последовательность моментов времени, каждому из которых соответствует некоторая величина платежей (для определенности учитываем их со знаком "минус") или поступлений (учитываем со знаком "плюс"). Как оценивать такие потоки в целом, как их сравнивать? Из многих характеристик потоков платежей рассмотрим здесь две - чистую приведенную величину, называемую в отечественных публикациях также чистой текущей стоимостью или чистым дисконтированным доходом (есть и иные названия) и обозначаемую NPV (Net Present Value), и внутреннюю норму доходности, или прибыли IRR (Internal Rate of Return). При определении NPV, как известно, для приведения величин платежей и поступлений к одному моменту времени используется постоянный дисконт-фактор. В реальности дисконт-фактор не является заранее известной функцией от времени и зависит от динамики как макроэкономических показателей - ставки рефинансирования Центрального банка РФ и индекса инфляции, так и микроэкономических - финансового положения инвестора, кредитной и депозитной ставок конкретного банка и др.. Кроме того, размеры и моменты осуществления платежей и поступлений также могут быть известны лишь с некоторой точностью. Следовательно, как функция от неопределенных (размытых) величин такая характеристика инвестиционного проекта, как NPV, сама является неопределенной. Лишь частично эту неопределенность можно снять, рассматривая NPV как функцию одной независимой переменной - дисконт-фактора. Если все перечисленные неопределенности можно описать интервалами (т.е. задать границы - "от" и "до"), то NPV также описывается интервалом, границы которого можно рассчитать с помощью подходов, развитых в статистике интервальных данных (см. главу 9 ниже). В результате в ряде случаев становится невозможным сделать однозначный выбор при сравнении двух инвестиционных проектов по NPV. Дело в том, что сравнение чисел можно провести всегда, а сравнение интервалов - лишь тогда, когда они не пересекаются. Если же пересекаются - целесообразно заявить об эквивалентности двух рассматриваемых инвестиционных проектов по чистой текущей стоимости NPV. Внутренняя норма доходности IRR - это значение постоянного дисконт-фактора q, при котором NPV как функция q обращается в 0. К сожалению, как хорошо известно, при "неудачном" распределении поступлений и платежей уравнение NPV(q) = 0 может иметь не одно, а много решений. В литературе указывают и некоторые иные причины, по которым IRR нецелесообразно использовать для сравнения потоков платежей. Кроме того, в случае IRR имеются те же источники неопределенности, что и для NPV - размытость дисконт-фактора, моментов и величин поступлений и платежей. Эта размытость приводит к необходимости рассматривать IRR как интервал, а при непустоте пересечения интервалов, соответствующих двум инвестиционным проектам, сравнение этих проектов сводится к утверждению об их равноценности. Итак, рассмотренные
характеристики инвестиционных проектов
NPV и IRR, как и любые иные, имеют
неустранимые неопределенности. Игнорировать
это объективное Как же поступать
при анализе инвестиционных проектов?
Рассмотрим два корректных подхода
к такому анализу. Во-первых, можно
постараться явным образом Во-вторых, вместо расчетов можно обратиться к интуиции специалистов, применив современные методы экспертных оценок (см. ниже главу 12), в частности, основанные на сборе оценок экспертами нечисловых экономических величин и их анализе методами статистики объектов нечисловой природы. Для практического использования представляется перспективным оценивание в виде интервалов (частный случай применения теории нечетких множеств) и соответственно их анализ методами статистики интервальных данных. Применение комбинированных подходов, предполагающих использование систем, интегрирующих как эконометрические и экономико-математические модели, так и методы экспертных оценок - пока дело будущего. | ||
н
Глава 12. Эконометрические методы проведения экспертных исследований и анализа оценок экспертов 12.1. Примеры процедур экспертных оценок Бесспорно
совершенно, что для принятия
обоснованных решений Методы экспертных оценок - это методы организации работы со специалистами-экспертами и анализа мнений экспертов. Эти мнения обычно выражены частично в количественной, частично в качественной форме. Экспертные исследования проводят с целью подготовки информации для принятия решений ЛПР (лицом, принимающим решения). Для проведения работы по методу экспертных оценок создают Рабочую группу (сокращенно РГ), которая и организует по поручению ЛПР деятельность экспертов, объединенных (формально или по существу) в экспертную комиссию (ЭК). Экспертные оценки бывают индивидуальные и коллективные. Индивидуальные оценки - это оценки одного специалиста. Например, преподаватель единолично ставит отметку студенту, а врач - диагноз больному. Но в сложных случаях заболевания или угрозе отчисления студента за плохую учебу обращаются к коллективному мнению - симпозиуму врачей или комиссии преподавателей. Аналогичная ситуация - в армии. Обычно командующий принимает решение единолично. Но в сложных и ответственных ситуациях проводят военный совет. Один из наиболее известных примеров такого рода - военный совет 1812 г. в Филях, на котором под председательством М.И. Кутузова решался вопрос: "Давать или не давать французам сражение под Москвой?" Другой простейший пример экспертных оценок - оценка исполненных командами номеров в КВН. Каждый из членов жюри поднимают фанерку со своей оценкой, а технический работник вычисляет среднюю арифметическую оценку, которая и объявляется как коллективное мнение жюри (отметим, что такой подход некорректен с точки зрения теории измерений). В фигурном катании процедура усложняется - перед усреднением отбрасываются самая большая и самая маленькая оценки. Это делается для того, чтобы у судьи не было соблазна завысить оценку одной спортсменке (например, соотечественнице) или занизить другой. Такие резко выделяющиеся из общего ряда оценки будут сразу отброшены. Экспертные оценки
часто используются при выборе -
одного варианта технических устройств
из нескольких, группы космонавтов
из многих претендентов, набора проектов
научно-исследовательских Существует масса методов получения экспертных оценок. В одних с каждым экспертом работают отдельно, он даже не знает, кто еще является экспертом, а потому высказывает свое мнение независимо от авторитетов. В других экспертов собирают вместе для подготовки материалов для ЛПР, при этом эксперты обсуждают проблему друг с другом, учатся друг у друга, и неверные мнения отбрасываются. В одних методах число экспертов фиксировано и таково, чтобы статистические методы проверки согласованности мнений и затем их усреднения позволяли принимать обоснованные решения. В других - число экспертов растет в процессе проведения экспертизы, например, при использовании метода "снежного кома" (о нем - дальше). Не меньше существует
и методов обработки ответов
экспертов, в том числе весьма
насыщенных математикой и Один из наиболее известных методов экспертных оценок - это метод "Дельфи". Название дано по ассоциации с древним обычаем для получения советов и поддержки при принятии решений обращаться в Дельфийский храм. Он был расположен у выхода ядовитых вулканических газов. Жрицы храма, надышавшись отравы, начинали пророчествовать, произнося непонятные слова. Специальные "переводчики" - жрецы храма толковали эти слова и отмечали на вопросы пришедших со своими проблемами паломников. По традиции говорят, что Дельфийский храм находился в Греции. Но там нет вулканов. Видимо, он был в Италии - у Везувия или Этны, а сами описанные предсказания происходили в XII-XIV вв. Эти места и даты вытекают из высшего достижения современной исторической науки - новой статистической хронологии. В США в 1960-х годах методом Дельфи назвали экспертную процедуру прогнозирования научно-технического развития. В первом туре эксперты называли вероятные даты тех или иных будущих научно-технических свершений. Во втором туре каждый эксперт знакомился с прогнозами всех остальных (без указания фамилий авторов прогнозов). Если его прогноз сильно отличался от прогнозов основной массы, его просили пояснить свою позицию, и эксперт довольно часто изменял свои оценки, приближаясь к средним значениям. Эти средние значения и выдавались заказчику как групповое мнение. Надо сказать, что реальные результаты прогностического исследования оказались довольно скромными - хотя дата высадки американцев на Луну была предсказана с точностью до месяца, все остальные прогнозы провалились - холодного термоядерного синтеза и средства от рака в ХХ в. человечество не дождалось. Однако сама методика оказалась популярной - за последующие годы она использовалась не менее 40 тыс. раз. Средняя стоимость экспертного исследования по методу Дельфи - 5 тыс. долларов США, но в ряде случаев приходилось расходовать и более крупные суммы - до 130 тыс. долларов. Несколько в стороне от основного русла экспертных оценок лежит метод сценариев, применяемый прежде всего для экспертного прогнозирования. Рассмотрим основные идеи технологии сценарных экспертных прогнозов. Социально-экономическое или экологическое прогнозирование, как и любое прогнозирование вообще, может быть успешным лишь при некоторой стабильности условий. Однако решения органов власти, отдельных лиц, иные события, например, землетрясения, меняют условия, в которых живет население и текут экономические процессы, и события развиваются по-иному, чем ранее предполагалось. Например, вполне очевидно, что после первого тура президентских выборов 1996 г. о дальнейшем развитии событий можно было говорить лишь в терминах сценариев: если победит Б.Н. Ельцин, то будет то-то и то-то, а если победит Г.А. Зюганов, то события пойдут так-то и так-то. Метод сценариев
необходим не только в экологической
или социально-экономической Таким образом, метод сценариев - это метод декомпозиции задачи прогнозирования, предусматривающий выделение набора отдельных вариантов развития событий (сценариев), в совокупности охватывающих все возможные варианты развития. При этом каждый отдельный сценарий должен допускать возможность достаточно точного прогнозирования, а общее число сценариев должно быть обозримо. Возможность подобной декомпозиции не очевидна. При применении метода сценариев необходимо осуществить два этапа исследования: - построение исчерпывающего, но обозримого набора сценариев; - прогнозирование
в рамках каждого конкретного
сценария с целью получения
ответов на интересующие Каждый из этих этапов лишь частично формализуем. Существенная часть рассуждений проводится на качественном уровне, как это принято в общественно-экономических и гуманитарных науках. Одна из причин заключается в том, что стремление к излишней формализации и математизации приводит к искусственному внесению определенности там, где ее нет по существу, либо к использованию громоздкого математического аппарата. Так, рассуждения на словесном уровне считаются доказательными в большинстве ситуаций, в то время как попытка уточнить смысл используемых слов с помощью, например, теории нечетких множеств приводит к весьма громоздким математическим моделям. Набор сценариев
должен быть обозрим. Приходится исключать
различные маловероятные Прогнозирование в рамках каждого конкретного сценария с целью получения ответов на интересующие исследователя вопросы также осуществляется в соответствии с описанной выше методологией прогнозирования. При стабильных условиях могут быть применены статистические методы прогнозирования временных рядов. Однако этому предшествует анализ с помощью экспертов, причем зачастую прогнозирование на словесном уровне является достаточным (для получения интересующих исследователя и ЛПР выводов) и не требующим количественного уточнения. Как известно, при принятии решений на основе анализа ситуации, в том числе результатов прогнозных исследований, можно исходить из различных критериев. Так, можно ориентироваться на то, что ситуация сложится наихудшим, или наилучшим, или средним (в каком-либо смысле) образом. Можно попытаться наметить мероприятия, обеспечивающие минимально допустимые полезные результаты при любом варианте развития ситуации, и т.д. Еще один вариант экспертного оценивания - мозговой штурм. Организуется он как собрание экспертов, на выступления которых наложено одно, но очень существенное ограничение - нельзя критиковать предложения других. Можно их развивать, можно высказывать свои идеи, но нельзя критиковать! В ходе заседания эксперты, "заражаясь" друг от друга, высказывают все более экстравагантные соображения. Часа через два записанное на магнитофон или видеокамеру заседание заканчивается, и начинается второй этап мозгового штурма - анализ высказанных идей. Обычно из 100 идей 30 заслуживают дальнейшей проработки, из 5-6 дают возможность сформулировать прикладные проекта, а 2-3 оказываются в итоге приносящими полезный эффект - прибыль, повышение технологической или экологической безопасности и т.п. При этом интерпретация идей - творческий процесс. Например, при обсуждении возможностей защиты кораблей от торпедной атаки была высказана идея: "Выстроить матросов вдоль борта и дуть на торпеду, чтобы изменить ее курс". После проработки эта идея привела к созданию специальных устройств, создающих волны, сбивающиеся торпеду с курса. Более подробно рассмотрим отдельные этапы экспертного исследования.
|