Влияние света и излучений на прокариоты

Автор: Пользователь скрыл имя, 08 Февраля 2013 в 10:38, реферат

Описание работы

Все живые организмы находятся под воздействием разных видов излучения. Эффекты, вызываемые облучением живых организмов, зависят от длины волны излучения и его дозы, т.е. от энергии и количества поглощенных квантов. Излучение в области длин волн от 300 до 1100 нм, приходящееся в основном на видимый свет, обеспечивает возможность осуществления упорядоченных реакций при поглощении его подходящими для этого системами.

Содержание

1.Влияние света и излучений на прокариоты. Отношение к молекулярному кислороду и кислотности среды.
2.Маслянокислое брожение. Химизм, продукты брожения. Практическое использование.
3.Микроорганизмы ризосферы растений, их роль в питании растений и происхождении микрофлоры зерна.
Литература.

Работа содержит 1 файл

Микробиология.docx

— 34.82 Кб (Скачать)

ОРЕНБУРГСКИЙ  ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УФИМСКИЙ  ФИЛИАЛ

 

           

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА № ____________

 

по _________________________________________________

полное  название дисциплины

_________________________________________________________________________________________

студентки__________________________________________

(Ф.И.О.  полностью) 

Ф.И.О. Преподавателя ______________________________

 

                                                      Группа__________________

 

                                                      Шифр студента__________

                                                     Учебный год_____________

 

 

 

 

 

 

План.

1.Влияние света и излучений  на прокариоты. Отношение к молекулярному  кислороду и кислотности среды.

2.Маслянокислое брожение. Химизм, продукты брожения. Практическое  использование.

3.Микроорганизмы ризосферы растений, их роль в питании растений  и происхождении микрофлоры зерна.

Литература.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Влияние света и  излучений на прокариоты. Отношение  к молекулярному кислороду и  кислотности среды.

Все живые организмы находятся  под воздействием разных видов излучения. Эффекты, вызываемые облучением живых  организмов, зависят от длины волны  излучения и его дозы, т.е. от энергии  и количества поглощенных квантов. Излучение в области длин волн от 300 до 1100 нм, приходящееся в основном на видимый свет, обеспечивает возможность  осуществления упорядоченных реакций  при поглощении его подходящими  для этого системами. В организмах излучение в этом диапазоне индуцирует такие процессы, как фотосинтез , фототаксис , фотореактивацию ДНК, синтез некоторых макромолекул. Для излучений с длиной волны больше 1100 нм к настоящему времени не зарегистрировано каких-либо биологических эффектов. Основное действие ИК-излучения - ускорение движения молекул (нагревание). Действие коротковолнового излучения на организмы приводит к возникновению мутаций или вызывает смертельный (летальный) исход из-за необычайно высокой фотохимической активности этого вида излучения, приводящего к модификации или разрушению поглотивших его органических молекул.

Важнейшим источником естественного  излучения является солнечная радиация. Основная масса падающей на Землю  солнечной энергии (примерно 75%) приходится на долю видимых лучей, почти 20% - на ИК-область спектра и только приблизительно 5% - на УФ с длиной волны 300-380 нм. Нижний предел длин волн солнечной радиации, падающей на земную поверхность, определяется плотностью так называемого озонового экрана. Излучение с длиной волны до 220 нм вызывает ионизацию молекул кислорода верхних частей атмосферы, приводя к образованию слоя озона (О3) с максимальной концентрацией на высоте примерно 25 км от поверхности Земли. Озоновый слой эффективно поглощает электромагнитное излучение с длинами волн в области 220-300 нм, выполняя функцию экрана. Таким образом, УФ с длиной волны до 220 нм полностью поглощается молекулами кислорода атмосферы, а в области 220-300 нм эффективно задерживается озоновым экраном.

Важной частью солнечного спектра  является область, примыкающая с  обеих сторон к 300 нм. Начиная с 300 нм и дальше, излучение индуцирует фотосинтетические и фототактические реакции, при этом у прокариот диапазон длин волн, в котором возможны оба процесса, значительно шире, чем у эукариот.

Фотосинтез, сопровождающийся выделением О2, свойственный всем эукариотным организмам и двум группам эубактерий (цианобактериям и прохлорофитам ), возможен в диапазоне от 300 до 750 нм. Для эубактерий, способных к осуществлению бескислородного фотосинтеза, диапазон излучений, обеспечивающих фотосинтетическую активность, увеличивается в сторону более длинных волн, захватывая ближнюю ИК-область: для зеленых бактерий вплоть до 840 нм, пурпурных - до 920 нм, а для некоторых представителей этой группы - до 1100 нм.

Спектры активности фототаксиса у  эубактерий совпадают со спектрами  фотосинтетической активности, поскольку  фоторецепторами в обоих случаях  служат одни и те же пигменты.

У экстремально галофильных архебактерий рода Halobacterium пигменты, запускающие фотосинтез и обеспечивающие фототактическую реакцию, различны и активны в диапазоне длин волн примерно от 450 до 600 нм.

Свет в диапазоне от дальнего УФ до дальней красной области  влияет на разнообразные жизненные  функции (подвижность, циклы развития, синтез каротиноидов) не только фототрофных , но и хемотрофных прокариот . Фоторецепторами, запускающими или контролирующими определенные метаболические пути, служат разные типы молекул: флавины, каротиноиды, порфирины. Солнечная радиация в диапазоне 220-300 нм, достигающая Земли, активно поглощается также молекулами белков и нуклеиновых кислот. Хотя повреждение негенетического материала может приводить к отрицательным эффектам, особенно при облучении клеток высокими дозами, при облучении более низкими дозами основной причиной инактивации клеток служит повреждение ДНК.

Молекулярный кислород явился мощным экологическим фактором, его накопление в атмосфере вызвало прогрессивную  эволюцию одних организмов и гибель других. 
Кислород широко распространен в природе, находясь как в связанном, так и в свободном состоянии. В первом случае он входит в состав молекул воды, органических и неорганических соединений. Во втором – присутствует в современной атмосфере в виде молекулярного кислорода (О2), объемная доля которого составляет 21%. Кислород является обязательным химическим компонентом любой клетки. Подавляющее большинство организмов удовлетворяет свои потребности в этом элементе, используя обе формы кислорода.

Среди прокариот существуют значительные различия в отношении к молекулярному  кислороду. По этому признаку они могут быть разделены на несколько групп.

Прокариоты, для роста которых  Онеобходим, называют облигатными (обязательными) аэробами. К ним относится большинство прокариотных организмов. Среди облигатных аэробов обнаружены существенные различия в отношении к уровню молекулярного кислорода в среде. Некоторые представители этой группы не способны к росту при концентрации О2, равной атмосферной, но могут расти, если содержание Ов окружающей среде будет значительно ниже (порядка 2%). Такие облигатно аэробные прокариоты получили название микроаэрофилов.

Облигатные аэробы (aeros – воздух) для осуществления процессов метаболизма нуждаются в молекулярном кислороде. Они не способны получать энергию путем брожения. Их ферменты осуществляют перенос электронов от окисляемого субстрата к кислороду. Аэробы развиваются, как правило на поверхности питательных сред. К облигатным аэробам относятся B. subtilis, микрококки и др.

Облигатные анаэробы не используют молекулярный кислород. Более того, он для них токсичен. Многие ферменты этих бактерий денатурируются при контакте с молекулярным кислородом.

Губительное воздействие кислорода  на облигатные анаэробы обусловлено  тем, что в живой клетке в присутствии  кислорода образуется пероксид водорода, который в больших концентрациях ядовит для бактериальной клетки. Облигатные анаэробы погибают при концентрации Н2О0,0003%, тогда как аэробы выдерживают до 0,015%, т.е. в 50 раз больше. Для обезвреживания пероксида водорода клетки аэробных бактерий вырабатывают фермент каталазу, разлагающую Н2Она воду и молекулярный кислород. Благодаря наличию каталазы Н2Оне накапливается в клетках. У анаэробов и факультативных анаэробов каталаза отсутствует, что и является одной из причин их неспособности жить в аэробных условиях.

Значительное количество представителей анаэробных бактерий относится к  роду Clostridium (C. tetani – возбудитель столбняка, C. botulinum – ботулизма, C. perfringens – возбудитель газовой гангрены). Они широко распространены в почве, озерных отложениях. Облигатные анаэробы принадлежат также к родам Methanobacterium, Bacteroides. 

Факультативные анаэробы могут жить как при наличии, так и в отсутствии кислорода. Типичными представителями этой группы являются кишечная палочка, стрептококк, стафилококк. Кишечная палочка на среде с углеводами развивается как анаэроб, сбраживая сахара, а затем начинает использовать кислород, как типичный аэробный организм, окисляя до СОи Н2О образовавшиеся продукты брожения (например, молочную кислоту). 
Степень аэробности или анаэробности среды может быть охарактеризована количественно при помощи окислительно-восстановительного потенциала. Окислительно-восстановительный потенциал выражают символом rH2. это индекс аналогичный рН. Но рН выражает степень кислотности и щелочности, а rH–степень аэробности и анаэробности. Это отрицательный лагорифм концентрации атомов водорода в среде.

В водном растворе, полностью насыщенным кислородоми, rH=41, а в условиях полного насыщения среды водородом rH=0. Таким образом, шкала от 0 до 41 характеризует любую степень аэробности. 
Облигатные аэробы, не способные существовать без свободного кислорода, не могут жить при низких значениях rH2. нижним пределом для них является окислительно-восстановительный потенциал порядка 10. однако и величины rHвыше 30 для этих организмов не благоприятны. Облигатные аэробы защищаются от чрезмерного окисления выделением в среду сильных восстановителей.

Орблигатные анаэробы жизнедеятельны при rHне выше 18-20. однако при этих показателях они уже не размножаются, а осуществляют обмен веществ, приводящий к выделению в среду восстановителей для снижения окислительно-восстановительного потенциала. Размножаться анаэробы могут лишь при значениях rHне выше 3-5. факультативно анаэробные микроорганизмы сохраняют метаболическую активность в широком диапазоне rH– от 0 до 30. 

Степень аэробности среды учитывается при культивировании микроорганизмов. При солосовании (консервировании) кормов искусственно создается анаэробные условия для обеспечения метаболических преимуществ бактериям молочнокислого и уксуснокислого брожений. Чрезмерная аэрация промышленных стоков животноводческих ферм позволяет активизировать окисление органического вещества стоков, в том числе и содержащихся в них микроорганизмов.

 

2.Маслянокислое брожение. Химизм, продукты брожения. Практическое использование.

При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:

С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал

В качестве побочных продуктов  при этом получаются этиловый и бутиловый спирты, уксусная кислота и др. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масляной кислоты.  Маслянокислые бактерии, вызывающие это брожение, представляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах 30-40°С. Они являются строгими анаэробами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содержании.  Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают кипячение в течение нескольких минут и погибают только при длительной стерилизации. Располагаются они либо в середине, либо ближе к одному из концов клетки, придавая ей форму веретена или теннисной ракетки.

Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы - крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и т. д. Вызываемое этими бактериями брожение имеет важное значение в превращениях веществ в природе.

В народном хозяйстве маслянокислое брожение может принести большой вред, так как маслянокислые бактерии способны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и т. д.

На маслянокислые бактерии подавляюще действует кислая реакция среды, поэтому там, где развиваются молочнокислые бактерии, выделяющие молочную кислоту, жизнедеятельность маслянокислых бактерий приостанавливается. Если же в заквашенных овощах медленно накапливается молочная кислота, то они могут быть испорчены в результате размножения в них маслянокислых бактерий. Эти бактерии вызывают порчу пастеризованного молока, в котором исключено молочнокислое брожение, а также сырого молока при длительном хранении его на холоде, когда деятельность молочнокислых бактерий ослаблена.

Развиваясь во влажной  муке, маслянокислые бактерии придают ей прогорклый вкус. Маслянокислое брожение находит практическое применение в производстве масляной кислоты, которая широко используется в технике.

 

 

3.Микроорганизмы  ризосферы растений, их роль в  питании растений и происхождении  микрофлоры зерна.

 

Ризосфе́ра — узкий участок почвы, прилегающий к корням растения и попадающий под непосредственное действие корневых выделений и почвенных микроорганизмов. Почва, не являющаяся частью ризосферы, называется основной почвой (англ. Bulk soil). В ризосфере содержится множество бактерий, питающихся отшелушивающимися растительными клетками, а также белками и сахарами, образуемых корнем. Кроме того, в ризосфере обитают многочисленные протисты и нематоды, питающиеся бактериями. Таким образом, большая часть круговорота питательных веществ и подавление растением различных патологических процессов происходят в непосредственной близости от корней.

Растения выделяют в ризосферу  множество веществ, выполняющих  различные функции. Стриголактон, растительный гормон, оказывающий влияние на микоризный гриб, стимулирует прорастание спор и порождает изменения, позволяющие грибу оплести корень растения и образовать микоризу. Паразитическое растение Striga также чувствительно к стриголактону и начинает прорастание при его обнаружении. Потом молодое растение прикрепится к корню и будет получать от него питательные вещества. Симбиотические азотофиксирующие бактерии, такие как представители рода Rhizobium, распознают неизвестное вещество, выделяемое корнями растений семейства Бобовые (лат. Fabaceae) и выделяют Nod-фактор, сообщающий растению о присутствии в близлежащей почве этих бактерий. После этого на корнях растения образуютсякорневые клубеньки, в которых поселяются бактерии и, снабжаемые питательными веществами, переводят азот в форму, усваиваемую растением. Несимбиотические (или «свободноживущие») азотофиксирующие бактерии поселяются в ризосфере, но только снаружи от корней нескольких растений (в том числе многих злаков) и схожим образом «фиксируют» азот в богатой азотом ризосфере растения. Хотя считается, что эти бактерии в своём местообитании не имеют прочной связи с растениями, они очень сильно отвечают на состояние растения. Например, азотофиксирующие бактерии, обитающие в ризосфере риса, проявляют суточные циклы, имитирующие таковые у растений, и, как правило, поставляют в почву больше связанного азота на стадии роста растения, когда потребность в нём особенно велика

Информация о работе Влияние света и излучений на прокариоты