Автор: Пользователь скрыл имя, 04 Декабря 2011 в 18:34, реферат
Фотосинтез – это процесс, при котором энергия солнечного света превращается в химическую энергию. В самом общем виде можно представить следующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более высокий энергетический уровень. В клетках зеленых растений в процессе эволюции выработался механизм, при котором энергия электрона, возвращающего на основной энергетический уровень, превращается в химическую энергию.
1.2.Фотосинтез может протекать в различных органах растений (стебли, плоды, и др.), имеющих зеленую окраску, но основным органов фотосинтеза является лист. Анатомическое строение листа приспособлено к тому, чтобы обеспечить поступление CO2 к клеткам, содержащим зеленые пластиды, и достигнуть максимального поглощения энергии света. Листья в большинстве случаев тонкие и обладают максимальной поверхностью на единицу массы. Наличие межклеточников облегчает доступ CO2 ко всем клеткам. К эпидермису, расположенному на верхней стороне листа, примыкает палисадная паренхима, клетки которой вытянуты перпендикулярно поверхности листа. Палисадная паренхима – это основная ассимиляционная ткань листа, особенно богатая хлоропластами. Густая сеть жилок в листе не только облегчает снабжение клеток паренхимы водой, но и способствует быстрому оттоку из листа углеводов, образующихся в процессе фотосинтеза.
1)Понятие о фотосинтезе
1.1.Значение процесса фотосинтеза
1.2.Лист как орган фотосинтеза
2)Хлоропласты
2.2.Химический состав и строение хлоропластов
3)Пигменты фотосинтеза
3.1.Хлорофиллы
3.2.Каротиноиды
3.3.Фикобилины
4)Этапы фотосинтеза
4.1.Фотофизический этап фотосинтеза
4.2.Фотохимический этап
4.3.Путь превращения углерода – темновая фаза фотосинтеза
4.3.1. C 3 –путь фотосинтеза(цикл Кальвина)
4.3.2. C 4 –путь фотосинтеза(цикл Хетча – Слэка)
4.3.3. CАМ - путь фотосинтеза
5)Значение фотосинтеза
6) Энергетический обмен
6.1.Аэробное (кислородное) дыхание
6.2.Анаэробное дыхание
7)Понятие о транспирации
7.1.Значение транспирации
7.2.Количественные характеристики транспирации
7.3.Кутикулярная транспирация
7.4.Устьичная транспирация
Список литературы
Федеральное Агентство Железнодорожного Транспорта
Государственное образовательное учреждение высшего профессионального образования
«Петербургский
Государственный
университет путей
сообщения» (ПГУПС)
Кафедра «Техносферная
и экологическая безопасность»
Реферат по курсу «Общая экология»
На тему:
«Фотосинтез, транспирация, дыхание
растений»
Санкт-Петербург
2009 год
Содержание
Оглавление
1)Понятие о фотосинтезе
1.1.Значение процесса фотосинтеза
1.2.Лист как орган фотосинтеза
2)Хлоропласты
2.2.Химический состав и строение хлоропластов
3)Пигменты фотосинтеза
3.1.Хлорофиллы
3.2.Каротиноиды
3.3.Фикобилины
4)Этапы фотосинтеза
4.1.Фотофизический этап фотосинтеза
4.2.Фотохимический этап
4.3.Путь превращения углерода – темновая фаза фотосинтеза
4.3.1. C 3 –путь фотосинтеза(цикл Кальвина)
4.3.2. C 4 –путь фотосинтеза(цикл Хетча – Слэка)
4.3.3. CАМ - путь фотосинтеза
5)Значение фотосинтеза
6) Энергетический обмен
6.1.Аэробное (кислородное) дыхание
6.2.Анаэробное дыхание
7)Понятие о транспирации
7.1.Значение транспирации
7.2.Количественные
7.3.Кутикулярная транспирация
7.4.Устьичная
Список литературы
1)1.1.Фотосинтез-это тип питания углеродом зеленых растений, при котором построение органических соединений идет за счет простых неорганических веществ (CO2 и H2O) с использованием энергии солнечного света. Общее уравнение фотосинтеза:
6CO2+12H2O→C6H12O6+6O2+6H2O
Фотосинтез – это процесс, при котором энергия солнечного света превращается в химическую энергию. В самом общем виде можно представить следующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более высокий энергетический уровень. В клетках зеленых растений в процессе эволюции выработался механизм, при котором энергия электрона, возвращающего на основной энергетический уровень, превращается в химическую энергию.
1.2.Фотосинтез может протекать в различных органах растений (стебли, плоды, и др.), имеющих зеленую окраску, но основным органов фотосинтеза является лист. Анатомическое строение листа приспособлено к тому, чтобы обеспечить поступление CO2 к клеткам, содержащим зеленые пластиды, и достигнуть максимального поглощения энергии света. Листья в большинстве случаев тонкие и обладают максимальной поверхностью на единицу массы. Наличие межклеточников облегчает доступ CO2 ко всем клеткам. К эпидермису, расположенному на верхней стороне листа, примыкает палисадная паренхима, клетки которой вытянуты перпендикулярно поверхности листа. Палисадная паренхима – это основная ассимиляционная ткань листа, особенно богатая хлоропластами. Густая сеть жилок в листе не только облегчает снабжение клеток паренхимы водой, но и способствует быстрому оттоку из листа углеводов, образующихся в процессе фотосинтеза.
2)2.1.Весь процесс фотосинтеза протекает в зеленых пластидах – хлоропластах. Различают три вида пластид: лейкопласты – бесцветные, хромопласты – оранжевые, хлоропласты – зеленые. В лейкопластах синтезируется и отлагает в запас крахмал, в хромопластах накапливаются каротиноиды, в хлоропластах сосредоточен зеленый пигмент хлорофилл и происходит фотосинтез.
Не зеленые организмы, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий пластид еще нет, их роль выполняют внутрицитоплазматические мембраны (пурпурные бактерии) или особые структуры – хлоросомы, локализованные на мембранах (зеленые бактерии). Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд).
Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояко выпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза.
2.2.Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными(% на сухую массу): белок-35-55; липиды-20-30; углеводы-10; РНК-2-3; ДНК- до 0,5; хлорофилл-9; каротиноиды-4,5.
Внутреннее строение хлоропластов, их ультраструктура были раскрыты с использованием микроскопа. Оказалось, что хлоропласты окружены двойной мембраной. Толщина каждой мембраны 7,5-10 нм, расстояние между ними 10-30нм. Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой и пронизано мембранами (ламеллами). Ламеллы, соединенные друг с другом. Образуют как бы пузырьки – тилакоиды(греч. «тилакоидес» -мешковидный). В хлоропластах содержится тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их тилакоиды –тилакоидами гран. Между гранами параллельно друг к другу располагаются длинные тилакоиды. Составляющие их ламеллы получили название –тилакоиды. Между отдельными тилакоидами в стопка гран имеются узкие щели. Тилакоидные мембраны содержат большое количество белков, участвующих в фотосинтезе. В состав интегральных мембранных белков имеется много гидрофобных аминокислот. Это создает безводную среду и делает мембраны стабильнее. Многие белки тилакоидных мембран построены в виде векторов и граничат с одной стороны со стромой, а с другой контактируют с внутренним пространством тилакоида.
Относительно связи между ламеллами гран и ламеллами стромы имеются разные точки зрения. Т. Вайер предложил гранулярно-решетчатую модель, согласно которой внутренние пространства всех тилакоидов соединены между собой. Таким образом, в хлоропластах имеется как бы два раздельных пространства – внутреннее (внутри тилакоидов) и внешнее (вне тилакоидов). У большинства водорослей гран нет, а ламеллы собраны в группы (пачки) по 2-8 штук. Не во всех случаях и у высших растений хлоропласты имеют гранальную структуру. Так, в листьях кукурузы имеются два вида хлоропластов. В клетках мезофилла содержатся мелкие хлоропласты гранального строения . В клетках обкладки, окружающих листовые сосудистые пучки, хлоропласты крупные и гран не содержат.
В строме хлоропластов
находится нити ДНК, рибосомы, крахмальные
зерна. Основной фермент, обеспечивающий
усвоение углекислого газа,- рибузолобифосфаткарбоксилазаок
3)Для того чтобы свет мог оказывать влияние на растительный организм т в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами – пигментами. Пигменты – это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обуславливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.
Состав ферментов зависит от систематического положения группы организмов. У фотосинтезирующих бактерий и водорослей пигментный состав очень разнообразен (хлорофиллы, бактериохлорофиллы, бактериородопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп и во многом зависят от среды обитания организмов. Пигменты фотосинтеза у высших растений значительно менее разнообразны. Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.
3.1.Хлорофилл – зеленый пигмент, обусловливающий окраску растений в зеленый цвет. Играет Важнейшую роль в процессе фотосинтеза. По химическому строению хлорофиллы — магниевые комплексы различных тетра пирролов. Хлорофиллы имеют порфириновое строение и структурно близки гему. В природе хлорофилл присутствует во всех фотосинтезирующих организмах — высших растениях, водорослях, синезеленых водорослях(цианобактериях), фотоавтотрофных простейших (иное название — протисты; систематическая группа пересекается с водорослями) и фотоавтотрофных бактериях.
Свойства и функция при фотосинтезе. Хотя максимум непрерывного спектра солнечного излучения расположен в "зелёной" области 550 нм (где находится и максимум чувствительности глаза), поглощается хлорофиллом преимущественно синий, частично — красный свет из солнечного спектра (чем и обуславливается зелёный цвет отражённого света).
Химическая структура. Хлорофиллы можно рассматривать как производные протопорфирина — порфирина с двумя карбоксильными заместителями (свободными или этерефицированными). Так, хлорофилл a имеет карбоксиметильную группу при С10, фитоловый эфир пропионовой кислоты — при С7. Удаление магния, легко достигаемое мягкой кислотной обработкой, дает продукт, известный как феофитин. Гидролиз фитоловой эфирной связи хлорофилла приводит к образованию хлорофиллида (хлорофиллид, лишенный атома металла, известен как феофорбид).
Все эти соединения интенсивно окрашены и сильно флуоресцируют, исключая те случаи, когда они растворены в органических растворителях в строго безводных условиях. Они имеют характерные спектры поглощения, пригодные для качественного и количественного определения пигментов. Для этой же цели часто используются также данные о растворимости этих соединений в HCl, в частности для определения наличия или отсутствия этерефицированных спиртов. Хлороводородное число определяется как концентрация HCl (%, масс./об.), при которой из равного объема эфирного раствора пигмента экстрагируется ²/3 общего количества пигмента. «Фазовый тест» — окрашивание зоны раздела фаз — проводят, подслаивая под эфирный раствор хлорофилла равный объем 30%-ного раствора KOH в MeOH. В интерфазе должно образовываться окрашенное кольцо. С помощью тонкослойной хроматографии можно быстро определять хлорофиллы в сырых экстрактах.
Информация о работе Фотосинтез,транспирация,дыхание растений