Подбор сечений элементов фермы

Автор: Пользователь скрыл имя, 18 Января 2012 в 15:59, контрольная работа

Описание работы

При подборе сечений элементов ферм для удобства комплектования металла, необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей, ограничиваясь обычно 6 – 8.
При значительных усилиях в элементах ферм возможно применение двух классов стали: более высокой прочности – для сильно нагруженных поясов и опорных раскосов; малоуглеродистой стали обыкновенного качества – для элементов решетки.

Работа содержит 1 файл

ответы.doc

— 804.00 Кб (Скачать)

      Расчет  поясных швов ведется на сдвигающее усилие, возникающее между поясами  и стенкой, и местного давления от внешней нагрузки, приложенной к  поясу балки.

Пример.

        Поясные швы выполняются  автоматической сваркой в положении "в лодочку" сварочной проволокой Св-08ГА под слоем флюса АН-60. Катет шва kf = 6 мм – минимально допустимая толщина сварного шва по табл. 38*.   Для этих условий и стали С255 по табл. 56: Rwf = 200 МПа; Rwz  =0,45×Run  =0,45×370 =166,5МПа; bf = 1,1; bz = 1,15 (Run = 370 МПа, табл.51* – для наиболее  толстого из свариваемых листов).

      Расчет  поясных швов выполняется  с учетом местных  напряжений под балками  настила (см. п. 2.4.).

Расчетные усилия на единицу  длины шва:

Проверяется прочность шва:

по  металлу шва:

по  металлу границы  сплавления:

Таким образом, минимально допустимая толщина шва  достаточна по прочности. 
 

Виды  сварки в строительстве  и виды сварных  соединений

     Основным видом соединений металлических строительных конструкций является сварка. Она почти полностью заменила другие виды соединений при изготовлении конструкций и широко применяется как заводе, так и при монтаже на строительной площадке. Сварка упрощает конструктивную форму соединения, дает экономию металла, позволяет применять высокопроизводительные механизированные способы, что значительно уменьшает трудоемкость изготовления конструкций. Сварочные соединения обладают не только прочностью, но и водо- и газонепроницаемостью, что особенно важно для листовых конструкций.

     Однако  возникающие при сварке внутренние остаточные напряжения в соединении усложняют его работу и в ряде случаев при действии динамических нагрузок и низких температур способствуют хрупкому разрушению. Выполнение сварки часто бывает затруднено при монтаже конструкций и соединении нескольких листов в пакеты. Оба эти обстоятельства в ряде случаев затрудняют применение сварки и заставляют обратиться к традиционным болтовым видам соединений.

     В строительстве применяется главным образом электродуговая сварка: ручная, автоматическая, полуавтоматическая, а также электрошлаковая. Реже применяется контактная и газовая сварка. Другие виды сварки при сборке и монтаже строительных конструкций пока не получили распространения.

     1. Ручная электродуговая сварка универсальна и широко распространена, так как может выполняться в любом пространственном положении. Она часто применяется при монтаже в труднодоступных местах, где механизированные способы сварки не могут быть причинены. Меньшая глубина проплавления основного металла и меньшая производительность ручной сварки из-за пониженной силы применяемого тока, а также меньшая стабильность ручного процесса по сравнению с автоматической сваркой под флюсом являются недостатками ручной сварки.

     Электроды, применяющиеся для ручной сварки, подразделены на несколько типов  по значению временного сопротивления  металла шва.

     2. Автоматическая и полуавтоматическая сварка под флюсом осуществляется автоматом с подачей сварочной проволоки d=2-5 мм без покрытия. Дуга возбуждается под слоем флюса, флюс расплавляется, легирует расплавленный металл содержащимися в нем примесями и надежно защищает его от соприкосновения с воздухом. Металл получается чистым с ничтожными количествами вредных примесей - кислорода, азота и др. Благодаря хорошей теплозащите расплавленный металл под слоем флюса остывает медленно, хорошо освобождается от пузырьков газов и шлака и отличается значительной плотностью и чистотой. Большая сила тока (600-1200 А и более), применяющаяся при автоматической сварке, и хорошая теплозащита шва обеспечивают глубокое проплавление свариваемых элементов и большую скорость сварки. Таким образом, хорошее качество швов и высокая производительность являются большими достоинствами автоматической сварки под флюсом, и ее применение желательно во всех соединениях, где это возможно.

     К недостаткам относится затруднительность  выполнения этой сварки в вертикальном и потолочном положении и в  стесненных условиях, что ограничивает ее применение на монтаже.

     Для коротких швов с успехом применяется  полуавтоматическая сварка шланговым  полуавтоматом. Процесс сварки ведется  голой проволокой d > 3 мм под флюсом в нижнем положении или порошковой проволокой, свернутой в трубочку стальной лентой, внутри которой запрессован флюс, в любом положении. Сварка порошковой проволокой должна найти себе широкое применение при монтаже конструкций.

     3. Электрошлаковая сварка представляет собой разновидность сварки плавлением; этот тип сварки удобен для вертикальных стыковых швов металла толщиной от 20 мм и более. Процесс сварки ведется голой электродной проволокой под слоем расплавленного шлака, сварочная ванна защищена с боков медными формирующими шов ползунами, охлаждаемыми проточной водой. Качество шва, выполняемого этим способом, получается очень высоким.

     4. Сварка в среде углекислого газа ведется голой электродной проволокой d =1,4-2 мм на постоянном токе обратной полярности. Углекислый газ при высокой температуре активно взаимодействует со сталью, окисляя ее, что компенсируется повышенным содержанием раскислителей в электродной проволоке. Сварка в среде углекислого газа, не требуя приспособлений для удержания флюса, может выполняться в любом пространственном положении. Она обеспечивает получение высококачественных сварных соединений из различных металлов при высокой производительности труда (на 15-20 % выше, чем при полуавтоматической сварке под флюсом). 

Виды  сварных швов. Расчет стыковых соединений. Конструктивные требования.

     Сварные швы классифицируют по конструктивному признаку, назначению, положению, протяженности и внешней форме.

     По  конструктивному признаку швы разделяют  на стыковые и угловые (валиковые). В табл. 5.2 показаны виды швов и необходимая форма разделки кромок соединяемых элементов различной толщины для обеспечения качественного соединения при автоматизированной и ручной сварке.

     Стыковые  швы наиболее рациональны, так как имеют наименьшую концентрацию напряжений, но они требуют дополнительной разделки кромок. При сварке элементов толщиной больше 8 мм для проплавления металла по всей толщине сечения необходимы зазоры и обработка кромок изделия. В соответствии с формой разделки кромок швы бывают V, U, X и К-образные. Для V- и U-образных швов, свариваемых с одной стороны, обязательна подварка корня шва с другой стороны для устранения возможных непроваров, являющихся источником концентрации напряжений.

     Начало  и конец шва имеют непровар и кратер, являются дефектными и  их желательно выводить на технологические  планки за пределы рабочего сечения  шва, а затем отрезать.

     При автоматической сварке принимаются  меньшие размеры разделки кромок швов вследствие большего проплавления соединяемых элементов (табл. 3). Чтобы  обеспечить полный провар шва, односторонняя  автоматическая сварка часто выполняется  на флюсовой подушке, на медной подкладке или на стальной остающейся подкладке.

     При электрошлаковой сварке разделка кромок листов не требуется, но зазор в стыке  принимают не менее 14 мм.

     Угловые (валиковые) швы наваривают в угол, образованный элементами, расположенными в разных плоскостях.

     Угловые швы, расположенные параллельно действующему осевому усилию, называют фланговыми, а перпендикулярно усилию - лобовыми.

     Швы могут быть рабочими или связующими (конструктивными), сплошными или  прерывистыми (шпоночными). По положению  в пространстве во время их выполнения они бывают нижними, вертикальными, горизонтальными и потолочными. Сварка нижних швов наиболее удобна, легко поддается механизации, дает лучшее качество шва, а потому при проектировании следует предусматривать возможность выполнения большинства швов в нижнем положении. Вертикальные, горизонтальные и потолочные швы в большинстве своем выполняются при монтаже. Они плохо поддаются механизации, выполнить их вручную трудно, качество шва получается хуже, а потому применение их в конструкциях следует по возможности ограничивать.

     Хорошо  сваренные встык соединения имеют  весьма небольшую концентрацию напряжений у начала наплава шва, поэтому  прочность таких соединений при  растяжении или сжатии в первую очередь  зависит от прочностных характеристик основного металла и металла шва. Различия разделки кромок соединяемых элементов не влияют на статическую прочность соединения и могут не учитываться.

     В стыковом шве при действии на него центрально-приложенной силы N распределение  напряжений по длине шва принимается равномерным, рабочая толщина шва принимается равной меньшей из толщин соединяемых элементов. Поэтому напряжение в шве, расположенном перпендикулярно оси элемента, определяется по формуле:

                                              (5.1)

     Для стыковых соединений, в которых невозможно обеспечить полный провар по толщине свариваемых элементов путем подварки корня шва или применения остающейся стальной подкладки, в формуле (5.1) вместо t следует принимать 0,7t.

     Расчетное сопротивление стыкового соединения, выполненного автоматической, полуавтоматической или ручной сваркой материалами, рекомендованными табл.2, принимается: при сжатии соединения независимо от методов контроля  ; при растяжении (осевом или при изгибе) соединения, проверенного физическими методами контроля,  ; при растяжении соединения, не проверенного физическими методами контроля,  ; при сдвиге соединения  , где   и   - расчетные сопротивления основного металла. 

Расчет  соединений, выполненных  угловыми швами.

     Угловыми  швами выполняются соединения внахлестку, и они могут быть как фланговыми, так и лобовыми.

     Фланговые швы, расположенные по кромкам прикрепляемого элемента параллельно действующему усилию, вызывают большую неравномерность распределения напряжений по ширине соединения. Неравномерно работают они и по длине, так как помимо непосредственной передачи усилия с элемента на элемент концы шва испытывают дополнительные усилия вследствие разной напряженности и неодинаковых деформаций соединяемых элементов в области шва.

     Неравномерность работы шва по длине заставляет ограничивать расчетную длину шва на величину не менее 4kш, или 40 мм и не более 85kш (за исключением швов, в которых усилие возникает на всем протяжении шва, например поясные швы в балках).

     Таким образом фланговый шов, сильно меняющий силовой поток, вызывает значительную неравномерность распределения напряжений в соединении. В соответствии с характером передачи усилий фланговые швы работают одновременно на срез и изгиб. Разрушение шва обычно начинается с конца и может происходить как по металлу шва, так и по основному металлу на границе его сплавления с металлом шва, особенно если наплавленный металл прочнее основного.

     Лобовые швы передают усилия равномерно по ширине элемента, но крайне неравномерно по толщине шва вследствие резкого искривления силового потока при переходе усилия с одного элемента на другой. Особенно велики напряжения в корне шва. Уменьшение концентрации напряжений в соединении может быть достигнуто плавным примыканием привариваемой детали, механической обработкой (сглаживанием) поверхности шва и конца накладки, увеличением пологости шва (например, шов с соотношением катетов 1:1,5), применением вогнутого шва и увеличением глубины проплавления.

     Эти приемы уменьшения концентрации напряжений в соединении особенно желательно применять в конструкциях, работающих на переменные нагрузки и при низкой температуре.

     Разрушение  лобовых швов от совместного действия осевых, изгибных и срезывающих напряжений, возникающих при работе соединения, происходит аналогично фланговым швам по двум сечениям.

     Ввиду сложности действительной работы угловых  швов расчет их носит условный характер и хорошо подтвержден экспериментальными данными. Они рассчитываются независимо от ориентации шва по отношению к  действующему усилию (фланговые и  лобовые); усилие принимается равномерно распределенным вдоль шва и рассматривается возможность разрушения шва от условного среза по одному из двух сечений.

Информация о работе Подбор сечений элементов фермы