Автор: Пользователь скрыл имя, 23 Января 2012 в 09:38, реферат
Контроль качества строительных материалов, изделий и конструкций производится двумя основными способами:1) Состоит в выявлении предельных несущих способностей объектов, что связано с доведением их до разрушения. 2)Связан с производством испытаний неразрушающими методами, что позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности. Этот способ наиболее приемлем при обследовании зданий и сооружений, находящихся в эксплуатации. Неразрушающими методами можно, например, определить влажность заполнителей бетона, степень уплотнения бетонной смеси в процессе формования, плотность и прочность бетонов в изделиях, провести дефектоскопию конструкций.
Введение…………………………………………………………………………………………………...3
1 Неразрушающие методы испытания строительных конструкций………………………………….4
2 Метод проникающих сред……………………………………………………………………………..4
3 Механические методы испытаний…………………………………………………………………….5
4 Акустические методы испытаний……………………………………………………………………..6
5 Магнитные методы испытания………………………………………………………………………...7
6 Инфракрасный метод испытания……………………………………………………………………...9
7 Радиоизотопный метод испытания……………………………………………………………………9
8 Электрофизические методы испытания………………………………………………………………9
9 Использование геодезических приборов и инструментов при освидетельствовании и
испытания конструкций…………………………………………………………………………………10
10 Современные методы и средства неразрушающего контроля качества бетонных и
железобетонных конструкций………………………………………………………………………..…13
Заключение……………………………………………………………………………………………….20
Список использованной литературы……………………………………………………………………21
Применение метода особенно эффективно на участках кровли, где протечки продолжались в течение продолжительного времени и ее основание оказалось обильно смоченным водой. Недостатком метода является невозможность его осуществления на участках кровли с выступающими над ее поверхностью заземленными элементами инженерного оборудования из электропроводных материалов.
Высоковольтный метод. По области применения и физической сущности высоковольтный метод подобен низковольтному методу. Отличие первого метода от второго заключается в том, что на поверхность кровли подается положительный высоковольтный заряд с безопасным по величине электрическим током (от аккумулятора или источника постоянного тока), причем не на электропроводящий контур, а на щеточный электрод с щетиной из медной проволоки. Положительными сторонами метода являются достаточно высокая его производительность, а также возможность точно определять местонахождение скрытых протечек. Недостаток метода – невозможность его применения при обследовании кровель в утепленных покрытиях и кровель с защитным слоем из гравия или с загрязненной поверхностью.
Емкостной метод. Применяют для определения местонахождения областей повышенного содержания влаги в толще покрытия на глубине до 50 мм, которые в большинстве случаев могут быть приняты как наличие протечки кровли. Метод основан на создании переменного электрического поля и измерении его напряженности в верхних слоях покрытия с помощью переставных или сканирующих электронных влагомеров емкостного типа. Большим значениям напряженности электрического поля соответствуют участки покрытия с увлажненным основанием под кровлей, а значит, с поврежденным или дефектным водоизоляционным ковром. Емкостным методом можно достаточно легко определить границы сырых мест с точностью до нескольких сантиметров. Недостатком метода являются высокая стоимость электронных емкостных влагомеров.
Влагомер МГ-4 предназначен для оперативного производственного контроля влажности строительных материалов и изделий, пилопродукции и деревянных деталей по ГОСТ 21718 и ГОСТ 16588.
Влагомер может быть использован для измерения влажности широкой номенклатуры твёрдых и сыпучих материалов при их дополнительной градуировке, разработке и аттестации методики выполнения измерений. Принцип работы влагомера основан на диэлькометрическом методе измерения влажности, а именно на корреляционной зависимости диэлектрической проницаемости материала от содержания в нем влаги при положительных температурах.
При
взаимодействии с измеряемым материалом
емкостный преобразователь
Результаты измерений выводятся на экран дисплея влагомера.
9 Использование геодезических приборов и инструментов при освидетельствовании и испытания конструкций.
Для
выявления деформаций зданий, вызванных
неравномерной осадкой
Основными инструментами при этом являются высокоточные или точные нивелиры, теодолиты высокой и средней точности, фототеодолиты, нивелирные рейки, мерные ленты.
Для определения осадок фундаментов и вертикальных деформаций стен, колонн и перекрытий производят периодическое повторное нивелирование марок, установленных на зданиях или сооружениях, по отношению к практически неподвижным реперам.
В качестве опорных реперов чаще всего используют городскую геодезическую сеть.
Реперная
головка изготавливается из бронзы
или нержавеющей стали в виде
полусферической поверхности
Базой репера служат металлический штырь, труба, зацементированная в бетонном основании, металлическая забивная или железобетонная (набивная, буроинъекционная) свая. Выбор базы зависит от инженерно-геологических условий застроенной площадки.
Нивелирные осадочные марки размещают в здании так, чтобы по результатам наблюдений можно было узнать о деформации здания (осадке, крене, перекосе) и его основания. Осадочные марки бывают разной конструкции. Горизонтальная часть марки делается из круглой стали диаметром 25 мм, а вертикальная – из круглой стали диаметром 20 мм. Вертикальная часть заканчивается полусферической головкой.
Закрытую марку закладывают заподлицо со стеной и закрывают крышкой, которую во время наблюдения снимают; вместо нее ввинчивают болт с шаровой головкой. После ввинчивания болта расстояние от центра головки до плоскости стены должно быть 40…50 мм. Хвостовик скрытой марки представляет собой трубу с внутренней нарезкой и внешними анкерами для заделки в гнезде.
Для определения крена и стрелы прогиба фундамента устанавливают от трех до семи марок вдоль продольной и поперечной осей сооружения.
В сборных конструкциях осадочные марки закладывают на несущих колоннах каркаса по периметру и внутри здания, на углах торцевых стен, у осадочных швов и в местах примыкания к существующим зданиям. Расстояние между марками в этих зданиях должно быть в пределах 10…15 м.
При определении деформации сооружения нивелированием предельное расстояние от нивелира до рейки должно быть не менее 3 м и не более 25 м. Оптимальная длина визирного луча находится в пределах 10…15 м.
Нивелирование целесообразно производить одной рейкой. При повторном нивелировании прибор следует устанавливать на одних и тех же точках, соблюдая по возможности постоянство направления ходов при одинаковом количестве станций в них. Должна быть составлена схема расположения и нивелирования осадочных марок с привязкой стоянок нивелира к зданию.
На основе результатов систематического нивелирования определяют скорость осадок марок во времени.
Среднюю скорость осадки марки вычисляют по формуле
u =(s2-s1)/(t2-t1), (1.24)
где s1 и s2 – осадки одной и той же марки в моменты времени t2 и t1.
Как отмечалось выше, минимальное расстояние от нивелира до рейки у обычных нивелиров равно 3 м. Однако при производстве нивелирных работ внутри здания появляется необходимость в более близком расположении нивелира от рейки. В этом случае на нивелире устанавливается насадка, в которую вмонтированы оптические стекла с разной диоптрией. В комплект насадки входит измерительная рейка, состоящая из штока, по которому перемешается подсвечиваемая рейка. Длина рейки 1000 мм. Насадка, в зависимости от расположенной против объектива нивелира линзы, позволяет производить отсчеты по рейке, установленной на расстоянии от 0,5 до 3 м.
Наклон здания, отклонения плоскости стен и углов от вертикали измеряют теодолитами высокой и средней точности. Теодолит центрируют над постоянным знаком, заделанным в грунт; в верхней части здания и сооружения выбирают какую-нибудь заметную точку и проектируют ее по вертикальной нити теодолита на цокольную часть здания при двух положениях трубы теодолита. Периодически снося точку вниз и отмечая на цоколе ее проекции штрихами, определяют крен за какой-то промежуток времени.
Крены зданий измеряют с двух взаимно перпендикулярных сторон для того, чтобы, определив частное приращение крена со станции 1 – q1, и частное приращение крена со станции 2 – q2, получить полное приращение крена по формуле
(1.25)
Для
характеристики направления крена
по отношению к сторонам света
на плане вектора крена обычно
указывают направление
Теодолит
устанавливают над центром
q= D b * L r (1.26)
где q и D b – частичное приращение крена соответственно в мм и с;
L – горизонтальное расстояние от станции А до проекции точки В, мм;
r – радиан, с.
Полное приращение крена определяют по формуле (1.25). Чтобы вычислить не только полное приращение крена, но и его абсолютное значение, на вертикальной грани, проходящей через точку В, нужно установить на фундаменте вторую марку B1 (штырь в виде крюка), удаленную от угла или плоскости стены на такое же расстояние, что и верхняя марка В. Из тех же точек стоянок теодолита А и А1 измеряют горизонтальные углы между В и В1.
Вначале вычисляют абсолютные значения частных кренов грани стены между точками В и В1, а затем – полный крен. Формула (1.25) пригодна только в том случае, если станции наблюдения располагаются во взаимно перпендикулярных направлениях. Если это условие не соблюдается, то полный крен определяют графически по правилу перпендикуляров.
Технический
отчет о геодезическом
По характеру линий равных осадок в пределах контура фундаментов определяют местонахождение очага осадков и направление кренов различных участков здания.
Стереофотограмметрический метод.
Этот вид геодезических работ находит широкое применение при обследовании объектов, составляющих историко-культурное наследие городов России.
В основу таких работ положен метод, базирующийся на физиологической возможности человека построить и измерить стереоскопическую (объемную) модель объекта по двум изображениям, полученным с разных точек фотографирования.
Сущность метода в том, что с помощью специального фотоаппарата, соединенного с геодезической трубкой (фототеодолитом), производится фотографирование испытываемой конструкции или сооружения с двух точек.
При
съемке применяют стеклянные фотопластинки
с большой разрешающей
Теория пары снимков. Бинокулярное зрение. Методы стереоскопического наблюдения и измерения снимков. Свойства стереоскопической модели. Координаты и параллаксы соответственных точек на стереопаре снимков. Формулы связи координат точек местности и координат их изображений на паре снимков. Определение координат точек местности по паре снимков методом двойной обратной фотограмметрической модели. Условие, уравнения и элементы взаимного ориентирования снимков.
Определение элементов взаимного ориентирования. Построение фотограмметрической модели. Внешнее ориентирование модели. Элементы внешнего ориентирования модели. Определение элементов внешнего ориентирования модели и элементов внешнего ориентирования снимков пары по опорным точкам. Точность определения координат точек местности по паре снимков.
Основные достоинства стереофотограмметрического метода.
Во-первых, это бесконтактная, безопасная и мгновенная фиксация состояния всего объекта.
Во-вторых, изображения получаются высокодостоверными и чрезвычайно наглядными.
В-третьих, что немаловажно, материалы и результаты съемки удобно хранить.
Таким образом, стереофотограмметрическая съемка дает полную и точную информацию о размерах, форме, положении объекта и всех его элементов в пространстве. Результатом работ являются метрические фотоснимки, ортофотопланы и обмерные чертежи.
Информация о работе Неразрушающие методы испытания конструкций