Краткая характеристика оборудования и сооружений ГРЭС

Автор: Пользователь скрыл имя, 09 Февраля 2013 в 19:01, курсовая работа

Описание работы

Основой повышения тепловой экономичности электростанции было и является совершенствование её паросилового цикла. Простейшая паросиловая установка, состоящая из парогенератора, турбины, конденсатора и насоса, работающего по циклу Ренкина, характеризовалась предельной простатой, разумеется, относительной, но имела очень низкий КПД. Современная паросиловая установка, работающая по регенеративному циклу, имеет достаточно высокий КПД, но сложна, громоздка и дорогостоящая. Повышение тепловой экономичности цикла путем достигнуто путем усложнения и удорожания паросиловой установки.

Содержание

1 Краткая характеристика оборудования и сооружений ГРЭС
1.1 Главный корпус
1.2 Топливоснабжение ГРЭС
2 Описание тепловой схемы энергоблока 300 МВт Ириклинской ГРЭС
3 Описание конденсационной установки турбины К-300-240 ЛМЗ
4 Обеспечение гидравлической плотности конденсатора
5. Методы выявления неплотности вакуумной системы конденсационной установки при работе турбины
6 Способы очистки конденсаторных труб от отложений
7. Расчетные показатели работы конденсационной установки
8. Обслуживание конденсационной установки во время работы
9. Методика расчета сроков очистки конденсаторов
10. Расчёт срока чистки конденсатора турбины ИриклинскойГРЭС
11. Система циркуляционного водоснабжения
12. Экологические аспекты технического водоснабжения
13. Безопасность проекта
14. Электротехническая часть
Заключение
Список использованных источников литературы

Работа содержит 1 файл

Установка ПГУ-325.doc

— 549.50 Кб (Скачать)

Отметка бетонированного дна сооружения полигонального слива 242,55 м. Ширина сливного фронта 215 м. Открытый отводящий канал  длиной 2700 м.

Все сооружения тех.водоснабжения  ГРЭС запроектированы и сооружены из расчета на пропуск 84 мЗ/сек воды, обеспечивающих работу ГРЭС на полную мощность 2400 МВт.

На береговой насосной первого  подъема установлено девять циркуляционных насосов типа ОП-2-145Э по одному насосу на каждый блок и один резервный, максимальной производительностью 36000 мЗ/ч. При уровне воды в водохранилище выше 244,5 м подвод воды в промбьеф осуществляется самотеком через специальные водоводы помимо насосов.

На напоре насосов установлены  обратные клапаны, самотечные водоводы перекрываются дисковыми затворами.

На берегу промежуточного бассейна в непосредственной близости от ГРЭС сооружены две береговые блочные  насосные станции 2 подъема, каждая на четыре блока. На каждый блок установлены  два циркуляционных насоса типа ОП5-110, которые по металлическим водоводам Ду-1800 мм подают воду в конденсатор турбин. Максимальная производительность насосов - 23760 м³/ч. Сброс воды из конденсаторов турбин и после основных эжекторов осуществляется по металлическим водоводам Ду-1800 мм в четыре закрытых железобетонных каналах сечением 4,2х3 м. Каждый канал отводит воду от двух блоков в сторону постоянного торца.

Ширина сливного фронта 215 м. Отводящий  открытый канал длиной 2700 м заканчивается  скальным порогом.

Максимальный расход охлаждающей  воды в летний период 288000 м3/час.

Часть воды, поступающая от ЦН, отбирается подъемными насосами эжекторов (ПНЭ) на эжектора, а также используется на охлаждение масла, или ОМТИ, генератора, электродвигателя ПЭН и вспомогательных  механизмов по блокам.

Сырая вода на химводоочистку и пожарный водовод может подаваться с напора ПНЭ блоков № 1-8, насосами сырой воды 2 подъема 2 шт. через подогреватели сырой воды 2 шт. и охладители загрязненного конденсата или из сливных циркводоводов блоков № 1,2, насосами сырой воды 1 подъема 2 шт. и насосами 2 подъема (или помимо них) по той же схеме. 

 

1.4 Комплекс очистных сооружений 

Включает в себя:

- очистку замазученых вод;

- очистку ливневых вод;

- очистку и нейтрализацию отмывочных  вод РВП;

- очистку вод кислотных отмывок  и промышленных стоков.

Производительность ОПК - 400 м3/час. Вода проходит следующую очистку: нефтеловушку, флотацию сернокислым алюминием от растворенных нефтепродуктов, после чего степень загрязненности снижается до 2-2,5 мг/л и далее через механические фильтры и фильтры активированного угля с содержанием нефтепродуктов 0,05-0,3 мг/л подается в ХВО или на 9-ю карту очистных хоз. бытовых стоков.

В насосную промстоков поступает:

- замасленная вода с отметки  -2,7 м главного корпуса и с  подшипников механизмов мазутного хозяйства;

- вода промканализации с ХВО,  БНФС, которая откачивается насосами  помимо шламонасосной на кислотный испаритель шламоотвала.

Шламоотвал состоит из 3-х секций. Общая емкость шламоотвала составляет (186м, 168м, 4м) 340 тыс.м3 Карта № 1 предназначена для накопления и отстоя сточных вод после отмывок РВП, карты 2,3 для вод, имеющих мех. примеси. Все три секции шламоотвала обнесены дамбой, по которой проложены трубопроводы сброса сточных вод в карты шламоотвала. Сточные воды после отмывки РВП содержат токсичные вещества, поэтому дно и откосы секций ш/отвала покрыты асфальтом. Вода, после ее осветления на картах шламоотвала и в медленных фильтрах направляется на главный корпус для повторного использования или на поля орошения.

Кислотные испарители общей емкостью - 75 тыс.мЗ (150мх150мх3м) - каждый. Испаритель разделен на 4 секции. Все 4 секции обнесены дамбой, по которой проходят трубопроводы сброса вод после кислотной промывки котлов дно испарителя покрыто асфальтом.

1.5 Главная электрическая схема ГРЭС

Главная электрическая схема ГРЭС включает в себя:

- систему шин 1110 кВ с выключателями  и трансформаторами (1,2 и обходная) ;

- систему шин 220 кВ (1,2 и обходная) с выключателем и трансформатором.

Системы шин 220 кВ секционируются воздушными выключателями, на первую секцию работают энергоблоки № 1,2, на вторую секцию - энергоблоки № 3,4. Система шин 220 кВ связана через автотрансформаторы АТ-1,2 с системой: шин 110 кВ и через автотрансформаторы и 5,6 с системой шин 500 кВ.

ОРУ-500 кВ имеет две системы шин, на которые работает через автотрансформаторы блоки №5,6, через блочные трансформаторы блоки № 7,8 и отходят 2 ЛЭП-500 кВ, каждые два присоединения ОРУ-500 кВ подключены через 3 воздушных выключателя (полуторная схема). На блоках № 5-8 установлены генераторные воздушные выключатели 20 кВ между генератором и блочными трансформаторами. На блоках №1-4 установлены блочные ВВ-220 кВ, расположенные на ОРУ-220 между блочными трансформаторами и системами шин 220 кВ. При выводе блоков в ремонт с.н. блоки питаются:

- бл. 1-4 от РТСН-1,2 по резервной  с.ш. (6 кВ)

- бл. 5-6 от собственных ТСН через  АТ-5,6 (со стороны ОРУ-220 или 500кВ)

- бл. 7-8 от собственных ТСН через  АТ-7,8 (со стороны ОРУ-500 кВ)

1.6 Химводоочистка ГРЭС 

Для восполнения пароводяных потерь пароводяного тракта котлоагрегатов используется глубоко обессоленная вода. Для получения обессоленной воды используется оборудование химического цеха (ОУ). Производительность обессоливающей установки (ОУ) 320 т/час. Исходная вода из водохранилища подогретая до 30°С в ПСВ поступает в осветлители, где при помощи дозировки известкового молока и коагулянта происходит удаление в виде шлама, органических примесей, бикарбонатной жесткости, механических примесей. Далее осветленная вода через промежуточные баки насосами подается на механические фильтры, в количестве 8 фильтров, где происходит полное удаление всех механических примесей, что смогли проскочить после осветлителей. Вода, очищенная на механических фильтрах, подается в Н-катионитовые фильтры 1 ступени (8 фильтров), где происходит удаление катионов кальция, магния, натрия. Далее вода поступает на Анионитовые фильтры 1 ступени (6 фильтров), где происходит удаление анионов сильных кислот (серной, соляной, азотной) и вода поступает в декарбонизатор для удаления углекислоты. Уже частично обессоленная вода после декарбонизатора поступает в баки, затем насосами подается в Н-катионитовые фильтры 2 ступени (3 фильтра), где происходит удаление всех катионов, которые смогли проскочить после Н-катионитовых фильтров 1 ступени. Далее вода поступает на Анионитовые фильтры 2 ступени (4 фильтра), где происходит удаление анионов сильных кислот, которые смогли проскочить с ан. фильтров 1 ступени, и анионов слабых кислот (кремниевая, углекислота), и далее вода поступает в фильтры смешанного действия, для полного удаления всех катионов и анионов, что смогли проскочить в фильтрах 2 ступени. Вода с содержанием солей жесткости Ж=0,2 мкг-экв/кг, На=5 мг/кг, SO = 15 мкг/кг по 2-м т-м поступает в БЗК.

Все Н-катионитовые фильтры загружены фильтрующим материалом катионитом КУ-2, который способен производить обмен катиона водорода на катионы

(1)

Обменная емкость материала  восстанавливается раствором серной кислоты с концентрацией 1,5-4%. Анионитовые фильтры 1 ступени загружены низкоосновным анионитом АН-31, который способен производить обмен гидроксильной группы ОН на анионы сильных кислот.

Анионитовые фильтры 2 ступени загружены  сильноосновным анионитом АВ-17, который способен производить обмен всех анионов на гидроксильную группу ОН.

Обменная жидкость материала анионитовых  фильтров восстанавливается раствором  щелочи с концентрацией 3-4%

1.6.1 Блочная обессоливающая установка  Конденсат турбин, используемый для питания прямоточных котлов, не удовлетворяет нормам качества питательной воды, поэтому конденсат подвергается химическому обессоливанию. Установка дает возможность удалять из конденсата не только растворимые соли, которые вымываются из цикла блока и из-за присоса охлаждающей воды в конденсаторе, а также и продукты коррозии конструкционных материалов тракта питательной воды. В схеме БОУ установлены механические фильтры, загруженные сульфоуглем и служащие для удаления из конденсата загрязнении, находящихся во взвешенном состоянии. Механические фильтры задерживая находящиеся в конденсате оксиды железа и другие взвеси улучшают качество кон-та и защищают от загрязнений иониты фильтров смешанного действия (ФСД). При подщелачивании питательной воды аммиаком содержащиеся в Конденсате окислы железа находятся в нерастворимой форме, преимущественно в коллоидном и мелкодисперсном состоянии. Для обессоливания конденсата установлены Ф.С.Д с выносной регенерацией фильтрующего материала.

В ФСД происходит удаление из конденсата всех растворимых солей. БОУ рассчитаны на 100% обработку кон-та турбин. Основной задачей водного режима котлоагрегата является обеспечение высокого качества питательной воды и выдаваемого им пара.

В условиях стационарной работы блока  концентрация оксидов железа, меди в паре, поступающем в турбину, близки к значениям их растворимостей, т.е. пар начальных параметров, является насыщенным паровым раствором по отношению к этим веществам. 

При расширении пара в турбине с  уменьшением температуры и давления растворимость примесей в паре уменьшается.

Для оксидов железа и меди состояние  пересыщения наступает на первых ступенях ЦВД и здесь начинается их выделение в твердую фазу, растворимость  оксидов меди снижается быстрее, чем оксидов железа.

 

2. Описание тепловой схемы энергоблока 300 МВт Ириклинской ГРЭС  

 

2.1 Паровой котел типа ТГМП-114

Прямоточный котельный агрегат  ТГМП-314 (Таганрогский газо-мазутный типа ПП 950/255 гм) предназначен для сжигания газа и мазута. Котел на сверхкритические параметры пара с промежуточным перегревом, однокорпусный, выполнен для работы в блоке с конденсатной турбиной К-300-240.

Котел имеет П-образную компоновку и состоит из топочной камеры и  опускной конвективной шахты, соединенных  в верхней части горизонтальным газоходом. Стены топочной камеры экранированы трубами радиационных поверхностей нагрева; нижней радиационной части (НРЧ), средней радиационной части (СРЧ), верхней радиационной части (ВРЧ) и фронтового пароперегревателя. В верхней части топки и горизонтальном газоходе расположен горизонтальный ширмовый пароперегреватель (ширмы первой и второй ступени), а также экраны потолка и поворотной камеры. В опускной шахте, последовательно по ходу газов, размещены конвективная часть пароперегревателя сверхкритического давления (КПП ВД), три ступени пароперегревателя низкого давления и водяной экономайзер.

Топочная камера имеет прямоугольное  сечение с размерами 17300х8650мм. Кратность  размеров по ширине и глубине топки  позволила применить один тип  трубных панелей для фронтового, заднего и боковых экранов. Высота топки 32316 мм (от пода до потолочного пароперегревателя). Объем топочной камеры 3960 м3.

В нижней части топочной камеры на фронтовой и задней стенке в два  яруса размещены 16 газомазутных горелок  типа ТКЗ. Горелки нижнего яруса установлены на отметке 8000 мм, верхнего яруса – на отметке 11000 мм.

Котел выполнен с рециркуляцией  дымовых газов. Рециркуляция применена  для регулирования температуры  промперегрева и для снижения уровня максимальных тепловых потоков  в НРЧ при работе на мазуте.

Среда от входа до выхода из котла  движется двумя неперемешивающимися  потоками. Перебросы с одной стороны  котла на другую не предусматриваются.

Регулирование температуры пара СКД  за котлом осуществляется изменением соотношения топлива и воды, регулировка температуры – с помощью впрыска питательной воды (суммарный расход на впрыски составляет 5% от номинальной производительности).

Воздухоподогреватели – регенеративные, вращающиеся, диаметром 9800 мм (РВП-98Г), вынесены за пределы котельной (два параллельно включенных агрегата на котел). РВП представляет собой противоточный теплообменный аппарат для подогрева воздуха за счет тепла дымовых газов. Процесс теплообмена осуществляется путем нагрева набивки ротора в газовом потоке и ее охлаждения в воздушном потоке.

Обмуровка котла сделана щитовой  и крепится к каркасу котла. Обмуровка  НРЧ, СРЧ, ВРЧ, ЭПК выполнена конструктивно  одинаково (толщина 280 мм). Обмуровка  потолка имеет толщину 290 мм. Конвективная шахта с отметки 18000 до отметки 30420 мм имеет обмуровку толщиной 400 мм.

Каркас котла служит для восприятия нагрузок от веса всех поверхностей нагрева, обмуровки, изоляции, площадок обслуживания, а также газовоздухопроводов  и других элементов котла. Каркас состоит из стальных колонн сварного типа, связанных между собой балками, раскосами, горизонтальными и вертикальными фермами металлоконструкциями потолочного перекрытия. Колонны котла опираются на железобетонный фундамент, крепления опорных башмаков колонн к фундаменту выполняется анкерными болтами. 

 

1 – газомазутные горелки; 2 –  экраны стен и пода НРЧ; 3 –  экраны стен СРЧ; 4 – экраны стен ВРЧ; 5 – ширмовый пароперегреватель; 6 – конвективный пароперегреватель; 7 – выход перегретого пара сверхкритического давления; 8 – вход вторичного перегретого пара; 9 – экономайзер.

Рисунок 1 – Компоновка прямоточного парового котла ТГМП – 314

2.2 Паровая турбина

Паровая турбина К-300-240 ЛМЗ одновальная  трехцилиндровая (рисунок 4), предназначена для непосредственного привода генератора переменного тока ТВВ-320-2 завода «Электросила» им. Кирова.

Рисунок 2 – Паровая турбина К-300-240

2.2.1 Конструкция турбины

Турбина имеет 39 ступеней давления, из них 12, в том числе одна одновенечная регулируемая, расположены в ЦВД, 17 ступеней в ЦСД и 10 в ЦНД. ЦНД  двухпоточный, с пятью ступенями  в каждом потоке. У турбины имеются  три выхлопа, один из которых расположен в части цилиндра среднего давления, и два – в цилиндре низкого давления.

ЦВД выполнен из двух корпусов: наружного, изготовленного из стали 20ХМФЛ, и внутреннего  – из стали 15ХМФБЛ. Оба корпуса  имеют горизонтальные разъемы. Подвод пара осуществляется по четырем паровпускным патрубкам.

В цилиндре высокого давления располагаются  регулирующая ступень, пять ступеней давления (ступени 2-6) во внутреннем корпусе (левый  поток пара) и шесть ступеней давления (ступени 7-12) в наружном корпусе (правый поток пара).

В целях охлаждения внутреннего  корпуса и паровпускных штуцеров, а также обогрева наружного корпуса  левый поток пара поворачивает на 180° и направляется в шестую и  последующие ступени. Все диски  ЦВД откованы за одно с валом. После 12-й ступени пар отводится промежуточный пароперегреватель. На «холодных» нитках промежуточного перегрева установлены предохранительные клапаны, исключающие работу ЦВД в неподвижном паре высокого давления при закрытых отсечных клапанах ЦСД.

Во внутреннем цилиндре крепится направляющий аппарат 1-й регулирующей ступени давления (сегмент сопл), диафрагмы 2-6-й ступеней давления и переднее уплотнение. Во внешнем цилиндре крепятся обоймы диафрагм 7-12-й ступеней давления и концевые уплотнения ЦВД.

Для сокращения времени прогрева турбины при пуске фланцы горизонтального разъема ЦВД и ЦСД снабжены паровым обогревом.

Фикс пункт (мертвая точка) турбины  расположен на боковых рамах задней части ЦНД, расширение агрегата происходит к переднему подшипнику и очень  мало в сторону генератора.

ЦСД выполнен прямоточным из трех частей и изготовлен из стали 15Х11МФЛ. Проточная часть ЦСД делится  на часть среднего давления (ЧСД) и  часть низкого давления (ЧНД). ЧСД  имеет 12 ступеней давления, после которых 2/3 пара перепускается в ЦНД, а 1/3 пара проходит последние пять ступеней давления ЧНД, ЦСД и отводится в конденсатор. Диски ротора ступеней 13-24 откованы вместе с валом ступеней 25-29 – насадные. Критическая частота вращения ротора ЦСД 1620 об/мин. ЦНД выполнен двухпоточным с пятью ступенями давления в каждом потоке, изготовлен из стали Ст3. Впуск пара производится в среднюю часть цилиндра. Средняя часть ЦНД состоит из наружной и внутренней частей, компенсирующих тепловые расширения. Перепуск пара из ЦСД в ЦНД производится двумя трубами диаметром 1050 мм. Пар, пройдя соответствующую половину цилиндра, поступает в конденсатор поверхностного типа. Выхлопные патрубки ЦНД присоединяются к конденсатору путем приварки при монтаже. 

Информация о работе Краткая характеристика оборудования и сооружений ГРЭС