Автор: Пользователь скрыл имя, 01 Апреля 2012 в 17:44, статья
Благодаря прогрессивным информационным технологиям создается единая база для необходимых инженерных решений при проектировании тоннелей на конкретных строительных площадках в любом регионе, в различных топографических, градостроительных и инженерно-геологических условиях. Наиболее эффективные решения и новации быстро становятся достоянием специалистов многих стран и реализуются на практике.
1. ВВЕДЕНИЕ
2. РАЦИОНАЛЬНЫЕ КОНСТРУКТИВНЫЕ РЕШЕНИЯ ТОННЕЛЕЙ
2.1. Конструкции из монолитного железобетона
2.2. Крупногабаритные сборные железобетонные конструкции
2.3. Сталебетонные композитные конструкции
3. ЭФФЕКТИВНЫЕ СПОСОБЫ СТРОИТЕЛЬСТВА ТОННЕЛЕЙ
3.1. Полуоткрытые способы
3.2. Применение щитов прямоугольного поперечного сечения
3.3. Меры по защите тоннелей от подземных вод
ЗАКЛЮЧЕНИЕ
Тенденции в развитии
строительного производства в г.
Москве указывают на то, что в
последнее время в строительной
практике происходит вытеснение сборных
железобетонных конструкций подземных
сооружений и замена их монолитными.
Применение монолитного железобетона
обеспечивает достаточно высокое качество
несущих элементов строительных
конструкций за счет укладки бетонной
смеси новым современным
Несмотря на широкое
применение конструкций тоннелей из
монолитного железобетона, полное вытеснение
из строительного процесса сборного
и сборно-монолитного
Как свидетельствует
современный опыт транспортного
строительства, применение наряду с
монолитным сборного железобетона при
соответствующих условиях (наличие
вблизи места строительства завода
ЖБК, благоприятные условия
Во многих странах
успешно применяют
Обделка Лефортовского тоннеля глубокого заложения на участке щитовой проходки длиной 2,21 км выполнена в виде колец наружным диаметром 13,75 м и внутренним - 12,35 м. Каждое кольцо состоит из крупных железобетонных блоков толщиной 0,7 м, шириной 2 м и массой 18 т . Блоки изготовлены из высокопрочного (В55) и водонепроницаемого бетона в специальных формах, обеспечивающих точность геометрических размеров ±2 мм.
Радиальные стыки между блоками плоские, а кольцевые имеют выступы и пазы. Для связи блоков между собой по кольцевым и радиальным граням предусмотрены временные болты, которые демонтируют после монтажа очередного кольца обделки.
Для повышения жесткости
обделки предусмотрена
Аналогичную обделку применяют на строительстве двухъярусного автотранспортного тоннеля под Серебряноборским лесничеством в г. Москве.
Обделка подводного тоннеля
под Токийской бухтой в Японии
состоит из сборных железобетонных
колец наружным диаметром 13,9 м, толщиной
0,65 м и шириной 1,5 м. Связь между
блоками обеспечивается длинными болтами
в кольцевом и радиальном направлениях.
Для компенсации возможных
Для изготовления блоков,
работающих в условиях агрессивного
воздействия морской воды, был
применен бетон высокой прочности
и минимальной
Примером успешного применения крупногабаритных сборных железобетонных конструкций может служить строительство участка тоннеля Майко в Японии [13]. Тоннель расположен в г. Кобе по трассе автомагистрали Хонсю - Сикоку и рассчитан на шестиполосное движение транспортных средств в обоих направлениях. Длина тоннеля 3,3 км, площадь поперечного сечения - 150 м2.
Южный участок тоннеля длиной 232 м, проходящий по плотнозастроенной городской территории, сооружен открытым способом. Площадь над тоннелем в настоящее время используется под муниципальный парк. С целью минимизации сроков строительства, сокращения трудозатрат, снижения шума и вибрации, обеспечения безопасности работ применили новое конструктивно-технологическое решение: преднапряженные арочные конструкции из сборного железобетона с омоноличеннымн стыками.
Двухсводчатая арочная конструкция с центральным пилоном, толщина которого изменяется от 0,6 до 2,95 м, расположена на глубине 1,5 м от поверхности земли. Лотковая часть и стены тоннеля выполнены из монолитного железобетона, а сводчатое перекрытие - из сборных железобетонных элементов: двух бесшарнирных арок с омоноличеннымн стыками в замковом и пятовом сечениях в местах соединения со стенами и пилоном. Общий вид конструкции тоннеля приведен на рис. 5.
Использование сборного
железобетона оправдано, в частности,
тем, что на протяжении всего 232-метрового
участка размеры и форма
Блоки арочного перекрытия изготовлены из бетона класса по прочности на сжатие В45, что позволило снизить их массу и лучше воспринимать усилия предварительного натяжения арматуры.
Поскольку монолитные пилоны воспринимают усилия преднапряжения в верхней части, их выполняли из бетона класса В30, а для лотковой плиты использовали бетон класса В24. Преднапрягаемая арматура имела расчетные сопротивления 930 и 1080 Н/мм2, а ненапрягаемая - 345 Н/мм2.
Строительство участка тоннеля вели в открытом котловане по поточной схеме. Сборные железобетонные блоки были изготовлены с использованием жестких стальных опалубочных форм и арматурных каркасов и доставлены на стройплощадку трейлерами. Монтаж блоков выполняли гидравлическим гусеничным краном. По мере монтажа производили инструментальный контроль за деформациями конструкций. Арочные элементы устанавливали на временные подмости, удерживая их до обжатия и омоноличивания стыков.
Стыковка полуарок в замковом сечении осуществлялась путем объединения выпусков арматуры и омоноличивания зазора. Для временной фиксации стыков использовали высокопрочные болты.
После монтажа очередной секции тоннеля длиной 12 м производили обжатие стыков в поперечном направлении. Вначале выполнили натяжение арматуры диаметром 26 мм в замке свода, где в дополнение к высокопрочным болтам использовали эпоксидный клей, обладающий высокой адгезией к бетону. На втором этапе обжимали пятовые участки свода в местах примыкания к верхней части стен и пилонов. «Мертвые» концы анкеров были заранее заделаны в стены (пилоны). После установки полуарок преднапрягаемые стержни диаметром 32 мм были установлены и соединены на муфтах. Конструктивный зазор между сводом и стенами был заполнен стальными пластинами, а пустоты в стыках - безусадочной уплотняющей смесью.
Особое внимание было
уделено точности изготовления блоков
и установки их в проектное
положение, которая составила +2 мм на
каждый блок шириной 1 м. Для обеспечения
водонепроницаемости
Опыт применения комбинированной сборно-монолитной конструкции тоннеля Майко свидетельствует о ряде преимуществ такого решения. Прежде всего, появилась возможность одновременного ведения работ по возведению монолитных (лотка, стен, пилона) и сборных (сводчатого перекрытия) конструкций, что позволило сократить сроки строительства тоннеля с 28 до 18 месяцев по сравнению с полностью монолитным вариантом. Отпала необходимость в устройстве сложной и громоздкой опалубки для возведения монолитного двухсводчатого перекрытия.
Использование бесшарнирной арочной конструкции предпочтительно с точки зрения сейсмической стойкости сооружения, поскольку жесткие стыки обеспечивают перераспределение изгибающих моментов в конструкции за счет образования пластических шарниров, которые существенно поглощают энергию землетрясения. Кроме того, удалось значительно снизить уровень шума и вибрации в процессе строительства и повысить безопасность производства работ.
Рассмотренные конструкции и технология их возведения применимы также к крупнопролетным ответственным транспортным сооружениям: многополосным автотранспортным тоннелям, станциям метрополитена, подземным автостоянкам, гаражам и комплексам, а также к мостам, опорам и фундаментам.
Совершенствование конструкций
транспортных тоннелей предусматривает
повышение степени
В связи с этим представляет
интерес разработанная в
Конструкция, выполненная в виде сэндвича, состоит из внутренней и наружной стальных оболочек толщиной 8 - 12 мм, между которыми укладывают монолитный бетон. Для связи оболочек с бетоном и восприятия нормальных и поперечных сил предусмотрены стальные стержни диаметром 20 - 22 мм с высаженными головками, приваренные к стальным листам. Поперечное сечение тоннельной обделки из композитных материалов приведено на рис. 6.
Таким образом можно
устраивать однопролетные или
Конструкции подводных тоннелей могут быть изготовлены на любой строительной площадке и доставлены к месту опускания в проектное положение на плаву, причем стройплощадка может находиться достаточно далеко от места строительства. Кроме того, значительно ускоряется процесс возведения тоннельных конструкций, достигается надежный контроль их качества.
Сравнительно небольшая масса опускных секций подводных тоннелей требует создания специального пригруза, предотвращающего возможность всплытия секций под действием выталкивающей силы. Пригруз в виде сплошных железобетонных блоков может быть размещен под проезжей частью тоннеля, а также на перекрытии секций.
Для оценки возможностей
и экономической эффективности
композитной сталебетонной
Результаты проведенных исследований подтвердили эффективность и экономичность композитных сталебетонных конструкций и их преимущества перед традиционными железобетонными обделками, что явилось основанием для внедрения таких обделок в практику тоннелестроения.
Первая попытка практического применения сталебетонных конструкций была предпринята при строительстве подводного тоннеля под р. Конвей в Северном Уэльсе (Великобритания) [16]. Четырехполосный автодорожный тоннель длиной 1089 м расположен на трассе автомагистрали А55 в устье р. Конвей. Подводная часть тоннеля длиной 708 м запроектирована из шести железобетонных опускных секций длиной по 118 м, шириной 24,1 м, высотой 10,5 м, водоизмещением 30 тыс.м3. По наружной поверхности секций предусмотрена металлоизоляция из стальных листов толщиной 6 мм.