Расчет полупроводникового лазера

Автор: Пользователь скрыл имя, 26 Февраля 2013 в 09:53, дипломная работа

Описание работы

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.
Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча.

Работа содержит 1 файл

основная часть.docx

— 281.91 Кб (Скачать)

Инверсия в СО2-лазере создается при помощи электрического разряда, каким механизмом – будет сказано чуть ниже. Чтобы луч усилился в высокой степени, он должен пройти в активной среде большой путь. Для этого ее помещают в резонатор. Самый простой резонатор – это два плоских зеркала, от которых случайно зарожденный луч отражается многократно. Одно из зеркал – полностью отражающее («глухое»), другое – полупрозрачное, чтобы выпускать излучение. Эти общие принципы почти в первозданном виде воплощены в простейшей конструкции СО2-лазера для небольших мощностей, примерно до 100 Вт (рисунок 2).

В лазере на основе СО2 используется четырёхуровневая система получения инверсной населённости (рисунок 3) между колебательными уровнями молекул. Молекула СО2 состоит из атома углерода и двух симметрично расположенных атомов кислорода, т.е. имеет линейную структуру О-С-О. Как видно из схемы на рис. 7 атомы кислорода могут совершать симметричные (мода n1ОО) и несимметричные (асимметричные)  (мода n3ОО), а также  поперечные этому направлению так называемые деформационные колебания (мода n2LOO) - из-за наличия двух взаимно перпендикулярных направлений этот тип колебаний является дважды вырожденным. Употребляемые для описания состояния колебательно-возбуждённой молекулы квантовые числа n1, n2L и n3 характеризуют число квантов,  соответствующих колебанию данного типа, L указывает поляризацию деформированного колебания. Лазерный квант излучается при переходе из состояния 001 в 100 (цифры обозначают колебательные квантовые числа в модах n1, n2L и n3 соответственно). Возможен также переход 001®020 с длиной волны l=9.4 мкм, но он обычно гораздо слабее.  Для получения оптимальных условий в рабочую смесь СО2-лазера помимо углекислого газа добавляют азот и гелий.

Рисунок 3 – Четырёхуровневая система получения инверсной населённости СО2-лазера.

Время жизни верхнего лазерного  уровня СО2 относительно спонтанных переходов составляет ~0.2 с (А21»5.1 с-1).  Поэтому более интенсивно верхние и нижние лазерные уровни расселяются (релаксируют)  в результате безизлучательных переходов при столкновениях возбуждённой молекулы с невозбуждёнными компонентами лазерной среды по схеме на рисунке 3. Однако высокая эффективность получения инверсной заселённости в газоразрядных СО2-лазерах обусловлена рядом причин. В электрическом разряде с высокой эффективностью образуются колебательно-возбуждённые молекулы N2, составляющие до 50% их общего числа. Поскольку молекула N2 состоит из двух одинаковых ядер, её дипольное излучение запрещено и она может дезактивироваться только при столкновении со стенкой или с другими молекулами. При наличии СО2 колебательная энергия N2 может быть легко передана молекулам СО2 поскольку существует близкий резонанс между колебаниями N2 и модой n3 колебаний СО2. Уровень 001 только на 18 см-1 лежит выше первого колебательного уровня азота и необходимый недостаток энергии молекулы СО2 могут получать от кинетической энергии азота. В результате энергия, затрачиваемая на возбуждение верхнего лазерного уровня и характеризуемая КПД разряда hк, для смесей СО2-N2-He может превышать 80%. При наличии азота в смеси время релаксации, запасённой верхним уровнем энергии tэ увеличивается и становится равным . При средней плотности выделяемой в положительном столбе разряда мощности <jE>  заселённость верхнего лазерного уровня в отсутствии генерации будет . Создание инверсии требует малой населённости нижнего лазерного уровня. В условиях отсутствия генерации нижние уровни СО2 находятся в тепловом равновесии с основным, их относительная заселённость ~ .

Для поддержания стационарной генерации нижние уровни СО2 необходимо расселять. Этот процесс обеспечивается добавлением в лазерную смесь расселяющих компонент, из которых наиболее эффективен гелий. Также помимо эффективного расселения уровня 100 гелий обеспечивает хороший теплоотвод от рабочей среды за счёт теплопроводности и оказывает стабилизирующее действие на заряд, поэтому в подавляющем большинстве существующих технологических лазеров предпочтение отдаётся ему. Таким образом, эффективная работа СО2-ляазера требует трёхкомпонентной лазерной смеси. Определение состава рабочей среды лазера является сложной оптимизационной задачей, решение которой необходимо проводить в каждом конкретном случае. Для диффузионного СО2-лазера часто используется смесь СО2:N2:He  в соотношении 1:1:3.

Частотный спектр генерации СО2-лазера имеет достаточно сложный вид. Причиной этого является наличие тонкой структуры колебательных уровней, обусловленной существованием ещё одной степени свободы молекулы СО2 – вращения. Из-за вращения молекулы каждый изображённый на рис. 7 колебательный уровень распадается на большое количество вращательных подуровней, характеризуемых квантовым числом j и отстоящих друг от друга на величину энергии Deвр, e001, e100, kTr. В результате интенсивного обмена энергий между вращательной и поступательной степенями свободы устанавливается больцмановское распределение частиц по вращательным состояниям, описываемое уравнением ,


где Nn , Nn,j – концентрации возбужденных частиц на колебательном уровне n и на его вращательных подуровнях j;


          = 0,38 см-1 – вращательная константа.

 Согласно правилам  отбора в молекуле СО2 переходы  между двумя различными колебательными  уровнями возможны при изменении  вращательного квантового числа  на 1 т.е. Dj=±1. Таким образом, линия усиления рабочей среды состоит из большого числа линий, каждая из которых уширена за счёт эффекта Доплера на величину и за счёт столкновений на величину и для СО2-лазера вычисляются:

 

,

где рi – парциальные давления компонент смеси.

Коэффициент усиления активной среды СО2-лазера существенно зависит от температуры рабочей смеси Тг. Процессы накачки лазерной смеси и генерации неизменно сопровождается нагревом газа. Температура лазерной смеси Тг в установившемся состоянии пропорциональна мощности энерговыделения в разряде, т.е. Тг~jE. В отсутствие генерации заселенность верхнего лазерного уровня также пропорциональна jE. Поэтому если время столкновительной релаксации не зависит от температуры газа и N001~Тг, учёт возрастания с ростом Тг лишь ослабит зависимость N001(Тг) (пунктирная линия).

 Заселённость нижнего лазерного  уровня находится в равновесии  с основным и описывается законом  Больцмана N100 ~                 . В связи с этим при достижении некоторой критической температуры Тmax инверсная заселённость лазерной смеси исчезает. Максимальная инверсия достигается при оптимальных температурах смеси Торt.


Типичные значения Тopt~400...500К, Тмах~700...800К.

Под действием электронных  ударов и в результате столкновений возбуждённых молекул в тлеющем  разряде в СО2-лазерах происходит частичная диссоциация углекислого газа СО2 ® СО + О. Отношение концентраций СО к СО2 может достигать ~12%, содержание О2 – 0,8%.

 Из-за этого при  сохраняющемся энерговкладе возрастают  потери на диссоциацию, возбуждение  электронных состояний и возбуждение  колебаний СО и О2. Поэтому населённость верхнего рабочего уровня СО2 падает и коэффициент усиления уменьшается. Поскольку ресурс работы СО2-лазера, определенный требованиями экономичности установки, оценивается несколькими сотнями часов, а существенный рост доли СО и О2 определяется минутами, необходимо включение в контур регенератора, в котором частично восстанавливается рабочая смесь. В диффузионном СО2-лазере целесообразно применение цеолита (SiO4+AlO4) в количестве 20мг, насыщенного парами H2O.

Целесообразность использования  тлеющего разряда для накачки  СО2-лазера состоит в том, что в молекулярных газах подавляющая часть выделяющейся энергии тока затрачивается на возбуждение молекулярных колебаний. Электрическое поле, поддерживающее плазму, сообщает энергию электронам – носителям тока, а те возбуждают колебания. Особенно эффективен в этом отношении азот, где до 95% энергии переходит первоначально в колебания молекул. Вместе с тем дальнейшее превращение этой энергии в энергию их поступательного движения («в тепло») происходит в азоте крайне медленно. Поскольку энергия первого колебательного уровня молекулы N2 очень близка к энергии уровня 001 СО2, открывается возможность быстрой резонансной передачи колебательного кванта от к СО2 с прямым заселением верхнего лазерного уровня. По этой причине в рабочий газ непременно добавляют азот, часто даже в большем количестве, чем сам СО2.

Сильной инверсии способствует не только интенсивное заселение  верхнего уровня, но и быстрое расселение нижнего уровня, на который все  время поступают молекулы, испустившие  лазерный квант. Но наряду со столкновениями идет и его прямое возбуждение. В результате заселенность оказывается не очень далекой от равновесной, соответствующей поступательной температуре газа Т. Значит, для эффективной лазерной генерации температура газа должна быть достаточно низкой. Практически недопустим нагрев газа более чем на 2000 С.

Между тем в рабочем  газе выделяется очень много тепла. Не вся энергия электронов затрачивается  на возбуждение верхнего лазерного  уровня СО2. Не все попавшие на этот уровень молекулы излучают лазерный квант. Если, как это обычно и бывает, КПД лазера составляет h ~ 10%, то 90% джоулева тепла тока идет в конечном счете на нагрев газа. Таким образом, обеспечение достаточно быстрого теплоотвода является необходимым условием работы СО2-лазера. В этом отношении очень полезно присутствие гелия в рабочем газе. Легкий гелий, обладая высокой теплопроводностью, ускоряет вывод тепла из разряда. Кроме того, атомы гелия способствуют дезактивации нижнего лазерного уровня. Обычно подбирают оптимальный для каждой конструкции состав газа, например в пропорциях СО2: N2: Не = 1: 1: 8 или 1: 6: 12 по числам молекул. Рабочая смесь со временем портится (разлагается СО2, образуются вредные в некоторых отношениях компоненты: СО, N2О и др.), так что смесь приходится медленно обновлять.

Из сказанного выше ясно, почему слабоионизированная и потому сильнонеравновесная плазма тлеющего (так же как и высокочастотного) разряда хороша для СО2-лазера, а плазма обычного дугового разряда не годится. В дуге атмосферного давления из-за относительно высокой степени ионизации (10 – 3–10 – 2) плазма равновесна и температура газа высока.

 

 

 

 

 

 

 

 

 

3 Резонаторы в газовых лазерах

Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну  и получить высокую интенсивность  излучения, необходимую для эффективного протекания процессов вынужденного излучения возбуждённых частиц рабочего тела лазера, а следовательно, когерентного усиления генерируемой волны. Оптические резонаторы в квантовой электронике  не только увеличивают время жизни  кванта в системе и вероятность  вынужденных переходов, но и так  же, как резонансные контуры и  волноводы определяют спектральные характеристики излучения.

В длинноволновом диапазоне  классической электроники длина  волны излучения существенно  больше размеров контура и его  спектральные характеристики определяются сосредоточенными параметрами электрической  цепи. Длинные радиоволны при этом излучаются в пространство практически  изотропно. При сокращении длины  волны и переход в СВЧ-диапазону  для формирования электромагнитной волны используются пустотелые объёмные резонаторы с размерами, сравнимыми с длиной волны. При этом появляется возможность формирования направленных (анизотропных) распределений излучения  в пространстве с помощью внешних  антенн. В ИК и видимом диапазоне  длина волны излучения много  меньше размеров резонатора. В этом случае оптический резонатор определяет не только частоту, но и пространственные характеристики излучения.

Простейшим типом резонатора является резонатор Фабри-Перо, состоящий  из двух параллельных зеркал, расположенных  друг от друга на расстоянии Lp. В  технологических лазерах резонатор  Фабри-Перо используется крайне редко  из-за больших дифракционных потерь. Чаще используются резонаторы с одной  или двумя сферическими отражающими  поверхностями. Свойства этих резонаторов  зависят от знака и величины радиуса их кривизны R, а также от Lp и определяются стабильностью существования в нём электромагнитной волны.

В так называемом устойчивом (стабильном) резонаторе распределение  поля воспроизводится идентично  при многократных проходах излучения  между зеркалами и имеет стационарный характер. В результате попеременного  отражения электромагнитных волн от зеркал волна формируется таким  образом, что в приближении геометрической оптики не выходит за пределы зеркал в поперечном направлении и выводится  из устойчивого резонатора только благодаря  частичному пропусканию самих отражающих элементов. В случае отсутствия потерь, излучение могло бы существовать в устойчивом резонаторе бесконечно долго. В неустойчивом (нестабильном) резонаторе световые пучки (или описывающие  их электромагнитные волны) в результате последовательных отражений от зеркал перемещаются в поперечном оси резонатора направлении к периферии и  покидают его.

Свойства резонаторов  и характеристики создаваемых ими  пучков можно описывать и в  волновом, и в геометрическом приближении. В качестве критерия применимости этих приближений удобно использовать так  называемое число Френеля  , где a, L – характерные размеры задачи поперёк пучка и вдоль направления его распространения. Условие NF>>1 соответствует применимости геометрического приближения. При NF£1 необходимо учитывать также волновые свойства электромагнитного излучения.

В геометрическом приближении  условие устойчивости резонатора имеет  вид:

.

 Расстояние между зеркалами  Lp в этом выражении всегда положительно, а R1 и R2 положительны только  для вогнутых т.е. фокусирующих зеркал и отрицательны для зеркал с выпуклой поверхностью. Для устойчивых резонаторов существует стационарное распределение интенсивности электромагнитного поля. В общем случае интенсивность излучения в устойчивых резонаторах распределена не равномерно по всему объёму резонатора, а сосредоточена внутри области, называемой каустикой (рисунок 4).

Рисунок 4 – Расчет резонатора

 Радиусы w1, w2, этой области на зеркалах а также её минимальный радиус w0 в месте перетяжки определяются длиной волны и параметрами резонатора (R1, R2,  Lp). Для основного типа колебаний их можно рассчитать с помощью соотношений:

Информация о работе Расчет полупроводникового лазера