Автор: Пользователь скрыл имя, 11 Ноября 2011 в 14:22, реферат
Среди многочисленных веществ, встречающихся в природе, резко выделяется группа соединений, отличающихся от других особыми физическими свойствами, высокой вязкостью растворов, способностью образовывать волокна, пленки и т.д. К этим веществам относятся целлюлоза, лигпин, пентозаны, крахмал, белки и нуклеиновые кислоты, широко распространенные в растительном и животном мире, где они образуются в результате жизнедеятельности организмов.
1. Введение. 3
2. Органические и неорганические ВМС. 4
3. Общие свойства ВМС. 5
4. Молекулярный вес полимеров. 5-6
5. Дробное поведение макромолекул. 6-9
6. Геометрическая форма макромолекул. 9-10
7. Особенности реакций полимеров. 10-12
8. Полиминералогичные превращения. 12-14
9. Роль ВМС в природе. 15-17
10.Значения ВМС в технике. 18-19
11.Алкидные смолы 20-23
12.Список используемой литературы 24
В реакциях элементарных звеньев полимера, вследствие соизмеримости молекулярных весов элементарного звена и реагирующего с ним низкомолекулярного вещества, участвуют обычно соизмеримые количества полимера и низкомолекулярного соединения. При образовании же межмолекулярных связей в реакции участвует, с одной стороны, макромолекула полимера, а с другой — молекула низкомолекулярного соединения, молекулярный вес которого в сотни или тысячи раз меньше молекулярного веса полимера. Например, для образования химической связи между двумя макромолекулами полиакриловой кислоты достаточно одного атома двухвалентного металла:
При этом макромолекулы полиакриловой кислоты теряют свою кинетическую самостоятельность, полимер приобретает пространственное строение, в результате чего резко изменяются физические свойства системы.
Весовая доля низкомолекулярного вещества, участвующего в макромолекулярной реакции, ничтожно мала, так как она определяется соотношением молекулярных весов низкомолекулярного соединения и полимера. Этим обусловлена одна из важных особенностей высокомолекулярных соединений — резкое изменение свойств под влиянием малых добавок некоторых веществ.
При реакциях химической деструкции полимеров на разрыв одной связи в полимере расходуется одна молекула низкомолекулярного вещества. Например, при гидролизе полиамидов для омыления одной амидной связи требуется одна молекула воды:
Третья особенность химии высокомолекулярных соединений — это резкая зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений от геометрии молекулы зависят лишь свойства отдельных ее атомов. Физико-химические свойства низкомолекулярных соединений, как правило, не рассматриваются в связи с формой молекулы.
В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для •линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул.
Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низкомолекулярных соединений. Многие линейные полимеры могут плавиться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры, отличаются хорошими физико-механическими свойствами: большой прочностью и эластичностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высокие эластические свойства. Значительная разрывная прочность линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации относительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией.
Эти особенности свойств линейных полимеров вытекают из их строения. Наличие двух типов связей (химических валентных связей и физических межмолекулярных взаимодействий), различающихся по энергетической характеристике, определяет возможность растворения и плавления линейных полимеров. Высокой степенью асимметрии макромолекул обусловлена высокая вязкость растворов и расплавов линейных полимеров.
Разветвленные полимеры также могут быть переведены в раствор, причем при одинаковом химическом составе и молекулярном весе растворимость разветвленных полимеров выше растворимости линейных полимеров.
Прочность разветвленных полимеров и вязкость их растворов зависят от степени и типа разветвления. Полимеры, имеющие относительно небольшое число боковых цепей, очень близки по свойствам к линейным полимерам. Сильноразветвленные полимеры, вследствие значительно меньшей степени асимметрия молекул, образуют растворы пониженной вязкостью. Прочность таких полимеров ниже прочности соответствующих линейных полимеров той же природы.
Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромолекулами. Физические и физико-механические свойства этих полимеров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается модуль упругости и уменьшается величина относительной деформации, т.е. свойства сетчатого (пространственного) полимера приближаются к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз).
Химические превращения полимеров дают возможность создавать многочисленные новые классы высокомолекулярных соединений и в широком диапазоне изменять свойства и области применения готовых полимеров.
Лучше всего изучены химические свойства природных высокомолекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превращениям целлюлозы, обладающей ценными техническими свойствами и являющейся наиболее широко распространенным природным органическим полимером. Путем химических превращений целлюлозы получают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс; нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха; многочисленные простые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а также присадок при бурении нефтяных скважин.
Когда появились синтетические полимеры, единственным способом изменения их состава и свойств был подбор новых исходных иономеров. Однако, как выяснилось впоследствии, некоторые полимеры нельзя получить непосредственным синтезом из низкомолекулярных соединений вследствие неустойчивости этих мономеров. Так, например, поливиниловый спирт, используемый для производства синтетического волокна, а также в качестве эмульгатора, для шлихтовки тканей и в пищевой промышленности, не может быть получен полимеризацией мономера. Его получают омылением готового полимера — поливинилацетата. Ацеталированием поливинилового спирта получают различные поливинилацетали, используемые в производстве лаков и покрытий. Только путем взаимодействия природных и синтетических каучуков с серой и другими полифункциональными соединениями (вулканизация) могут быть получены различные сорта резины и эбонита. Дубление белков, обеспечивающее возможность их технического использования, также основано на химическом взаимодействии белков с альдегидами или другими бифункциональными соединениями. Наконец, к химическим превращениям относится направленная деструкция полимеров, часто применяемая для регулирования молекулярного веса полимеров, перерабатываемых в различных отраслях промышленности. На полном гидролизе целлюлозы основан Процесс получения гидролизного спирта. Механическая деструкция полимеров используется в промышленном масштабе для изменения физико-химических свойств полимеров, а также для синтеза новых типов сополимеров.
Несмотря на широкое промышленное использование химических превращений полимеров, до сих пор не проводилось достаточно систематических исследований их химических свойств, и в химии высокомолекулярных соединений главное внимание уделялось методам синтеза полимеров лишь в последние годы реакции высокомолекулярных соединений становятся предметом большого числа исследований, которые должны открыть новые возможности синтеза полимеров с ценными свойствами, а также помочь в выяснении механизма превращений высокомолекулярных соединений в живой природе.
Химические реакции высокомолекулярных соединений не отличаются от реакций классической органической химии, но большая величина и сложность строения макромолекул вносят в эти превращения свои особенности.
В химии высокомолекулярных соединений различают реакции звеньев полимерной цепи и макромолекулярные реакции. Реакции звеньев полимерной цепи приводят к изменению химического состава полимера без существенного изменения степени полимеризации. Такие реакции называются полимераналогичными превращениями:
Это внутримолекулярные химические превращения полимера и реакции его функциональных групп и атомов с низкомолекулярными соединениями.
Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и структуры основной цепи полимера. К этим реакциям относятся реакции деструкции полимеров, сопровождающиеся уменьшением молекулярного веса, и межмолекулярные реакции, в результате которых образуются пространственные структуры и резко возрастает молекулярный вес полимера.
Особое место среди макромолекулярных реакций занимают реакции концевых групп полимеров, которые, вследствие малого числа этих групп при достаточно большом молекулярном весе полимера, практически не сказываются ни на составе и строении полимера, ни на степени его полимеризации.
Реакции этого типа были использованы Штаудингером для доказательства макромолекулярного строения природных, а затем и синтетических полимеров. Поливинилацетат был превращен им в поливиниловый спирт, а последний — снова в поливинилацетат:
При этом оказалось, что степень полимеризации продуктов превращения не отличается (в пределах ошибки измерения) от степени полимеризации исходных полимеров.
Нитраты целлюлозы также можно получить без деструкции макромолекулы, если нитровать целлюлозу смесью азотной и фосфорной кислот и фосфорного ангидрида при 0°С. Этот метод нитрования целлюлозы используют для последующего определения ее молекулярного веса.
При полимераналогичных превращениях реакционная способность функциональных групп и атомов не зависит от молекулярного веса полимера. Так, например, реакции щелочного гидролиза протекают практически с одинаковой скоростью и одинаковой энергией активации (28 и 27,5 ккал/моль). Константы скорости гидролиза поливинилацетата и винилацетата одинаковы и т. д.
Свойства функциональных групп при переходе от мономера к полимеру изменяются не больше, чем при переходе от одноатомных низкомолекулярных соединений к многоатомным.
Реакция дегидратации одноатомных спиртов под действием серной кислоты или ее солей является классическим методом получения простых эфиров. В образовании молекулы эфира участвуют две молекулы спирта. Реакция дегидратации гликолей в аналогичных условиях протекает в двух направлениях: с образованием линейных полигликолей или с внутримолекулярной циклизацией (если возможно образование ненапряженных пяти- или шестичленных циклов). Этиленгликоль под действием серной кислоты образует полигликоли или шестичленный циклический эфир 1, 4-диоксан:
Гликоли, у которых гидроксильные группы разделены двумя или тремя метиленовыми группами, дегидратируются с образованием пяти- или шестичленных циклических соединений с эфирной связью.
Роль ВМС в природе.
Живая природа представляет собой форму существования высокомолекулярных соединений. Она развивается в окружении и действии с неорганическим миром, построенным в основном из ВМС. Только вода и воздух распространены на земном шаре так же широко, как ВМС.
Человечество для удовлетворения своих нужд так же создает и использует высокомолекулярные материалы. По своей значимости для человечества с высокомолекулярные материалами конкурируют лишь металлы, как конструкционные материалы, топливо как источник энергии и пищевые продукты. Такое широкое распространение и необычайно высокое значение ВМС вытекает из их общих свойств, обусловленных громадной величиной и сложностью макромолекул.
Информация о работе Высокомолекулярные соединения, их свойства и применение.