Автор: a*************@yandex.ru , 24 Ноября 2011 в 20:32, реферат
Понятие биотехнологий, несмотря на его научную принадлежность, сегодня широко используется в лексиконе современных людей. Оно звучит с экранов телевизоров, об этом пишут в газетах, интернет полон статей по проблематике биотехнологий, с этим понятием знакомы даже школьники. Это обусловлено активным развитием и замечательными перспективами использования биотехнологий, их ролью в жизни широких масс населения. Помимо очевидной научной ценности, биотехнологии стали занимать значительную нишу в экономике развитых стран, в том числе и в России. Развитие биотехнологий наше государство обоснованно считает важнейшей задачей как с точки зрения развития наукоемких и конкурентных отраслей экономики, так и с точки зрения безопасности. Развитие биотехнологий поддерживается в рамках реализуемой в настоящее время Федеральной целевой программы «Научно-технологическая база России» на 2007—2012 годы.
Введение;
Понятие биотехнологии;
Этапы развития биотехнологии;
История развития биотехнологии (даты, события);
Биотехнология на службе народного хозяйства, медицины и науке:
Биотехнология и сельское хозяйство. Биотехнология и растениеводство;
Биотехнология и животноводство;
Технологическая биоэнергетика;
Биотехнология и медицина;
Биотехнология и пищевая промышленность;
Биогеотехнология;
Биотехнология охраны окружающей среды;
Биоэлектроника.
Заключение;
Список литературы.
Московский Государственный Вечерний Металлургический
институт
Курсовая работа
по дисциплине общая химическая технология
на тему:
«Современная биотехнология»
Студент: Жеребина Н.С.
хим. наук Кругликова Е.С.
Группа: МЭ-07
Москва 2010
Оглавление:
Введение;
Заключение;
Список литературы.
Введение
Понятие биотехнологий, несмотря на его научную принадлежность, сегодня широко используется в лексиконе современных людей. Оно звучит с экранов телевизоров, об этом пишут в газетах, интернет полон статей по проблематике биотехнологий, с этим понятием знакомы даже школьники. Это обусловлено активным развитием и замечательными перспективами использования биотехнологий, их ролью в жизни широких масс населения. Помимо очевидной научной ценности, биотехнологии стали занимать значительную нишу в экономике развитых стран, в том числе и в России. Развитие биотехнологий наше государство обоснованно считает важнейшей задачей как с точки зрения развития наукоемких и конкурентных отраслей экономики, так и с точки зрения безопасности. Развитие биотехнологий поддерживается в рамках реализуемой в настоящее время Федеральной целевой программы «Научно-технологическая база России» на 2007—2012 годы.
Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году. Биотехнология - это интеграция естественных и инже-нерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. Биотехнология - это производство, основанное на последних достижениях современной науки: генной инженерии, физико-химии ферментов, молекулярной диагностики, селекционной генетики, микробиологии, химии антибиотиков, комбинаторной химии. [2, с.3] Чаще всего применяется в медицине, пищевой промышленности, также для решение проблем в области энергетики, охране окружающей среды. Современные биотехнологии защиты окружающей среды, основаны на применении биопрепаратов, в состав которых входят разнообразные бактерии (микроорганизмы), способные разлагать различные органические вещества, в том числе и те, которые загрязняют окружающую среду. Микроорганизмы - это удивительные создания природы, обладающие уникальными свойствами. Они - самые многочисленные обитатели нашей планеты. Среда обитания микроорганизмов охватывает весьма широкие зоны биосферы, зачастую с экстремальными условиями обитания, где не могут развиваться ни рас-тения, ни животные. Их повсеместное распространение обусловлено не-большими размерами, позволяющими легко переноситься с потоками воды и воздуха, а также высокой устойчивостью к экстремальным фак-торам среды. Обладая высокой химической активностью, они способны к разложению органических веществ как природного, так и антропогенного происхождения. Именно на этих уникальных свойствах микроорганизмов базируется применение биотехнологии, как эффективного способа защиты и восстановления окружающей среды.
В развитии биотехнологии выделяют следующие периоды:
Последний специально отделяется от предыдущего, так как биотехнологии уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.
Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен – при-готовление теста, получение молочнокислых продуктов, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка рас-тительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим ап-паратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.
Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Луи Пастера (1822 – 1895). Именно Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в произ-водственных условиях брожение (спиртовое, уксусное, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом. Практическое значение этих исследований Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с инди-видуальным, имеющим точные характеристики биообъектом. Ослаб-ленный патоген и животное, в организм которого он введен, могут рас-сматриваться как своеобразный биообъект, а получаемая вакцина - как биотехнологический препарат. Пастер создал строго научные основы по-лучения вакцин, тогда как замечательные достижения Э. Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.
Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на прак-тическом воплощении этих достижений), выросла из биотехнологии Пастера и, являясь также строго научной, отличается от последней, прежде всего тем, что способна создавать и использовать в производстве не-природные биообъекты, что отражается как на производственном про-цессе в целом, так и на свойствах новых биотехнологических продуктов.
1917 г. – введен термин биотехнология
- произведен
в промышленном масштабе
- показано,
что генетический материал
1953 г. – установлена структура инсулина, расшифрована структура ДНК;
1961 г. – учрежден журнал «Biotechnology and Bioengineering»;
1961-1966 гг. – расшифрован генетический код, оказавшийся универсальным для всех организмов;
1953-1976 гг. – расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;
1963 г. – осуществлён синтез биополимеров по установленной структуре;
1970 г. – выделена первая рестрикционная эндонуклеаза;
- осуществлён синтез ДНК;
1972 г. – синтезирован полноразмерный ген транспортной РНК;
1975 г. – получены моноклональные антитела;
1976 г. – разработаны методы определения нуклеотидной последовательности ДНК;
1978 г. – фирма «Genentech» выпустила человеческий инсулин, полученный с помощью Е. соli;
- синтезированы фрагменты нуклеиновых кислот;
- разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК;
1983 г. – гибридные Ti-плазмиды применены для трансформации растений;
1990 г. – официально начаты работы над проектом «геном человека»;
1994-1995 гг. – опубликованы подробные генетические и физические карты хромосом человека;
1996 г. – ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд. долларов;
1997 г. – клонировано млекопитающее из дифференцированной соматической клетки;
2003
г. – расшифрован геном (набор генов,
присущий организму) человека, содержащий
приблизительно 30 тысяч генов и три миллиарда
«букв» молекул ДНК.
Биотехнологические разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.
Для удовлетворения
пищевых потребностей
Во-вторых, повышение цен на традиционные источники энергии (нефть, природный газ, уголь) и угроза исчерпания их запасов побудили челове-чество обратиться к альтернативным путям получения энергии. Биотех-нология может дать ценные возобновляемые энергетические источники: спирты, биогенные углеводороды, водород. Эти экологически чистые ви-ды топлива можно получать путем биоконверсии отходов промышлен-ного и сельскохозяйственного производства.
В-третьих, уже в наши дни биотехнология оказывает реальную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свертывания крови и иммунной системы, тромболитических ферментов, изготовленных биотехнологи-ческим путем. Помимо получения лечебных средств, биотехнология позво-ляет проводить раннюю диагностику инфекционных заболеваний и злока-чественных новообразований на основе применения препаратов анти-генов, моноклональных антител, ДНК/РНК-проб. С помощью новых вак-цинных препаратов возможно предупреждение инфекционных болезней.
В-четвертых,
биотехнология может резко
Биотехнологические разработки играют важную роль в добыче и пере-работке полезных ископаемых, получении различных препаратов и созда-нии новой аппаратуры для аналитических целей.
Культурные растения страдают от сорняков, грызунов, насекомых-вреди-телей, фитопатогенных грибов, бактерий, вирусов, неблагоприятных по-годных и климатических условий. Перечисленные факторы наряду с поч-венной эрозией и градом значительно снижают урожайность сельско-хозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает колорадский жук, а также гриб Phytophtora — возбудитель ранней гнили (фитофтороза) картофеля.
В последние годы большое внимание уделяют вирусным заболеваниям растений. Наряду с болезнями, оставляющими видимые следы на куль-турных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие урожайность сельскохозяйственных культур и ведущие к их вырождению.
Биотехнологические пути защиты растений от рассмотренных вредо-носных агентов включают: 1) выведение сортов растений, устойчивых к не-благоприятным факторам; 2) химические средства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсе-ктициды), фитопатогенными грибами (фунгициды), бактериями, вирусами; 3) биологические средства борьбы с вредителями, использование их естес-твенных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.
Наряду с защитой растений ставится задача повышения продуктивности сельскохозяйственных культур, их пищевой (кормовой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Разработки нацелены на повышение энер-гетической эффективности различных процессов в растительных тканях, начиная от поглощения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.