Снижение горючести полимерных материалов

Автор: Пользователь скрыл имя, 12 Марта 2012 в 09:41, реферат

Описание работы

Огонь на протяжении всего развития человечества долгое время был единственным средством для приготовления пищи, отпугивания зверей, освещения и отопления, позднее - выплавки и обработки металлов и, наконец, для работы разнообразных двигателей - от парового до ракетного. Однако и вреда огонь приносил и приносит до сих пор достаточно. Когда дома были деревянными, пожары уничтожали целые города; когда появились новые искусственные материалы,

Содержание

Содержание
Введение 2
1.Горение органических полимеров 4
1.1. Способы снижения горючести полимерных материалов 6
1.2. Снижение горючести с помощью фосфорсодержащих
соединений 12
2.Интумесцентные системы 17
2.1.Химия интумесценции 17
2.2.Огнезащита через интумесценцию 19
2.3.Интумесцентные добавки 19
3.Роль аммонийполифосфатов при огнезащите полимеров 20
4.Полимерные материалы пониженной горючести 22
4.1.Материалы на основе полиолефинов 24
4.2Материалы на основе полиамидов 24
4.3.Материалы на основе карбамидных и
фенолоформальдегидных смол 26
5.Методы оценки пожароопасности полимерных материлов 27
6.Оценка воспламеняемости полимерных материалов 29
7.Оценка способности материалов к распространению
процесса горения 30
8.Критерии эффективности антипиренов 31
Литература 33

Работа содержит 1 файл

Ивашкина О..doc

— 72.00 Кб (Скачать)

не влиять на лакокрасочные покрытия, нанесённые на пропитанную древесину;

обеспечивать (самостоятельно или совместно с вводимыми в одном растворе антисептиками) биостойкость пропитываемого материала;

не создавать затруднений при механической обработке материала;

не влиять на свойства пропитываемого материала;

Одним из лучших антипиренов является диаммонийфосфат (NH4)2HPO4 (аммоний фосфорнокислый двузамещенный), который при нагревании выделяет окислы фосфора, покрывающие древесину защитной плёнкой, и негорючий газ - аммиак. Диаммоний фосфат обычно применяется в смеси с сульфатом аммония (NH4)SO4.

Хорошим антипиреном является также смесь фосфорнокислого натрия с сульфатом аммония. В качестве антипирена может быть использована и смесь буры с борной кислотой (в соотношении 1:1).Для комбинированной защиты деревянных конструкций от огня и гниения в антипирены должны добавляться антисептики (например, фтористый натрий), не снижающие огнезащитных свойств антипиренов. (Ал. Ал. Берлин Московский физико-технический институты публикуем сокращенный вариант статьи ПЕРЕНЕСТИ С СПИСОК ЛИТЕРАТУРЫ)

 

1.2.           Снижение горючести с помощью фосфорсодержащих соединений

 

Фосфорсодержащие соединения могут быть органическими и неорганическими. Они активны в газовой или конденсированной фазе, а иногда и в обоих. Полагают, что соединения фосфора действуют в газовой фазе через образование радикалов РО*, поглощающих активные радикалы Н* и ОН*, которые способствуют распространению пламени.

Действие в конденсированной фазе заключается в том, что при разложении антипирена образуются остатки фосфорной кислоты, которые действуют как дегидратирующий агент, способствуя образованию карбонизированных структур. При этом также может образовываться аэрозоль, способствующий дезактивации радикалов за счёт эффекта стенки. Номенклатура фосфорсодержащих соединений довольно широка, и для начала можно разделить их на 2 группы – галогенсодержащие и не содержащие галогенов.

Достоинство соединений, содержащих галоген и фосфор заключается в том, что они, во-первых, отщепляя при разложении галоген радикалы, дезактивируют по обычному для галогенов механизму активные радикалы Н* и ОН* и, во-вторых, способствуют образованию карбонизированных структур по описанному выше механизму. Ко второй группе относятся красный фосфор, водорастворимые неорганические фосфаты, нерастворимый фосфат аммония и полифосфаты, органофосфаты и фосфонаты, а также фосфин оксиды.

Красный фосфор является прекрасным антипиреном для гетероцепных полимеров (ПЭТ, ПК, и т.п.). Специально обработанный красный фосфор используется для огнезащиты электротехнических изделий из полиамидов. В комбинации со вспенивающими и карбонизирующими агентами применяется в интумесцентных антипиренах. Применение фосфора ограничено его токсичностью и красным цветом.

Алкилфосфонаты – высокая эффективность соединений данного класса обусловлена высоким содержанием фосфора. Однако, высокая летучесть таких антипиренов ограничивает их применение в жёстких полиуретановых пенах и высоконаполненных полиэфирах.

Олигомерные циклические  фосфонаты – высокая вязкость таких соединений усложняет их использование в чистом виде. Чаще всего используются суперконцентраты. В основном применяются для изготовления негорючих волокон из ПЭТ, при содержании 6% активного компонента в ПЭТ удовлетворяют всем требованиям к такой продукции. Благодаря низкой летучести могут использоваться в жёстких полиуретановых пенах.

Фосфор и его соединения наиболее эффективные ингибиторы процесса горения и тления различных полимеров. Действие фосфорсодержащих антипиренов (замедлителей горения) обычно объясняют следующим образом. При пиролизе полимеров, содержащих соединения фосфора, происходит образование фосфорной кислоты и ее ангидридов, которые катализируют дегидратацию и дегидрирование и способствуют процессу карбонизации. В последнее время стали применять не только низкомолекулярные, но и полимерные фосфорсодержащие антипирены. Эти полимерные добавки имеют лучшую совместимость с основным полимером, меньше мигрируют из полимерного материала, отличаются более высокой стойкостью к различным внешним воздействиям и при относительно низком содержании фосфора являются эффективными антипиренами.

Представляет интерес возможность придания огнестойкости полимерным композициям, содержащим обычные эпоксидные, полиэфирные и другие смолы путем армирования их "огнезащищенными" фосфорсодержащими химическими волокнами (то есть волокнами, модифицированными фосфорсодержащими химическими соединениями). В этом случае одновременно улучшаются физико-механические свойства за счет армирования прочными волокнами и снижается горючесть из-за усиления коксообразования на поверхности горящего полимера. В качестве эффективных антипиренов в последние годы широко применяются оксиды и гидроксиды различных металлов, соли органических и неорганических кислот, хелатные комплексы. Существенным преимуществом этих антипиренов является то, что их можно использовать в концентрациях, намного меньших, чем концентрации фосфора и галогенсодержащих соединений.

Идея защиты материала от огня путем образования на его поверхности коксовой "шапки" была доведена до логического конца, когда стали разрабатываться и применяться так называемые вспучивающиеся покрытия. Эти покрытия при воздействии огня образуют пористый пенококс, увеличивая свою толщину в десятки раз. Образующийся кокс имеет низкую теплопроводность и какое-то время защищает основной материал или конструкцию от теплового потока. Вспучивающиеся покрытия представляют собой сложные композиции, состоящие из полимерного связующего и целого ряда добавок для обеспечения вспенивания, необходимой вязкости и быстрой карбонизации при нагреве.

В последние годы интенсивное развитие получило введение антипиреновых добавок в полимерные композиции в виде микрокапсул. Оболочка капсулы изготовлена из полимера, например из желатина, поливинилового спирта, размеры ее составляют десятки или сотни микрон. Антипирены, используемые для этих целей, можно разделить на две группы: высококипящие, температура кипения которых выше температуры вскрытия микрокапсул, и низкокипящие, температура кипения которых значительно ниже температуры вскрытия микрокапсул. К первой группе относятся, например, трихлорэтилфосфат и трисдибромпропилфосфат. Механизм их действия и эффективность в микрокапсулированном виде аналогичны тому случаю, когда они введены в виде обычных добавок к полимеру. Это интенсификация процесса коксообразования, увеличение количества кокса и его пористости, а также снижение проницаемости кокса для горючих жидких и газообразных продуктов деструкции полимера. Основной эффект микрокапсулирования в этом случае состоит в улучшении совместимости антипирена с полимером, затруднении его "выпотевания" - выделения из полимера при длительной эксплуатации и повышении физико-механических свойств материала.

Фосфорсодержащие антипирены используются в пенополиуретанах, полиэфирах, эпоксидных смолах, а так же в термопластах на основе пластифицированного поливинилхлорида, модифицированного полипропиленоксида и целлюлозы.

Обширную группу применяемых на практике замедлителей горения составляют фосфорсодержащие соединения. В эту группу входят весьма разнообразные по своему типу соединения: от красного фосфора до фосфорсодержащих полиэфиров и полифосфазенов. Очень широк и круг полимеров для снижения горючести, которые успешно применяются фосфорсодержащие антипирены. Эти антипирены действуют по самым различным механизмам. Разнообразие механизмов объясняется тем, что фосфорсодержащие антипирены применяются как в виде добавок, не реагирующих с полимером в процессе переработки полимерных материалов и эксплуатации изделий, так и в виде реактивных соединений, вступающих в химическое взаимодействие с полимером. Характерной чертой горения и высокотемпературного пиролиза этих полимеров на воздухе является образование коксоподобного остатка. Фосфорсодержащие антипирены, как правило, вызывают значительное увеличение содержания коксового остатка при горении или пиролизе полимеров и, следовательно, уменьшение количества летучих продуктов деструкции.

В присутствии фосфорсодержащих антипиренов существенную роль играет более интенсивное образование карбонизованного слоя на поверхности горящего полимера. Этот слой, видимо, может выполнять функцию теплоизолятора, особенно в тех случаях, когда кокс имеет пористую структуру или является твердой пеной. Не исключено также, что карбонизованный слой служит проводником тепла, по которому тепло отводится из зоны пиролиза. Очевидно, что фактором, определяющим, какой из этих двух механизмов доминирует в каждом конкретном случае, является теплопроводность коксового слоя. Поэтому для ответа на вопрос, какова же функция карбонизованного слоя, необходимы измерения его теплопроводности. Не исключено также, что в некоторых случаях карбонизованный слой играет роль барьера для продуктов деструкции полимера при горении, диффундирующих из объема полимеров в предпламенную зону. Следует отметить, что теплоизолирующий слой на поверхности горящего полимера может быть образован не только из коксоподобного пиролизного остатка полимера, но и из продуктов термического превращения фосфорсодержащих антипиренов. Фосфорсодержащие замедлители горения проявляют наибольшую эффективность в полимерах, имеющих явно выраженную тенденцию к коксообразованию.

Эффективность фосфорсодержащих антипиренов не зависит от степени окисления фосфора: трифенилфосфин и трифенилфосфат обладают равной эффективностью.

Различия в эффективности фосфонатов и фосфатов как антипиренов связаны с различной способностью этих соединений влиять на карбонизацию полиэфиров при пиролизе. Во всяком случае в смесях метилфосфоновой кислоты с нафталином при нагревании до 600-700°С карбонизация протекает интенсивнее, чем в смесях трифенилфосфата с нафталином в аналогичных условиях. Вместе с тем установлено, что метил- и фенилфосфоновые кислоты образуются при пиролизе полиэфиров, содержащих фрагменты фосфонатной структуры. Вероятно, эти кислоты являются более активными катализаторами процессов карбонизации, чем эфиры фосфорной кислоты. Остатки после пиролиза полиэфиров, имеющих в своем составе фосфор, и смесей полиэфиров с соединениями фосфора состоят из полифосфорных кислот и угольных слоев. При этом карбонизованные остатки характеризуются упорядоченной структурой.

Сравнительно низкая эффективность фосфорсодержащих замедлителей горения в полиолефинах и некоторых других не образующих кокса полимерах, видимо, результат того, что механизм в этих случаях иной, чем в коксообразующих полимерах. Поскольку известно, что летучие соединения фосфора ингибируют предварительно смешанные пламена, можно предположить, что продукты термического разложения фосфорсодержащих замедлителей горения способны действовать как ингибиторы горения некоксующихся полимеров в газовой фазе.

Предполагают, что активным ингибитором в газовой фазе может быть РО, взаимодействующий с Н+ и НО- с образованием НРО, действительно идентифицированной в некоторых пламенях.

Интересная гипотеза о механизме действия фосфорсодержащих замедлителей горения полиметилметакрилата предлагается авторами работ, установившими, что увеличение концентрации фосфора приводит к незначительному увеличению константы скорости выгорания ПММА и одновременно к заметному возрастанию КИ. Предполагают, что возрастание константы скорости выгорания может быть связано с влиянием фосфорных кислот, образующихся при термическом разложении фосфорсодержащих антипиренов, на процесс деструкции полимера. В свою очередь, разложение фосфорных кислот в газовой фазе приводит к образованию P2 O5, на частицах которого, как на стенке, гибнут активные радикалы, ведущие процесс горения. Заметное влияние на процесс горения полимеров может оказывать промотирование образования углеродных частиц фрагментами фосфорсодержащих антипиренов в газовой фазе. Унос этих частиц приводит к охлаждению пламени, поскольку их теплоемкость выше, чем теплоемкость газообразных продуктов деструкции.

Еще один фактор, действие которого может проявиться при горении полимеров, содержащих замедлители горения на основе фосфора, связан с тем, что некоторые из них настолько термостабильны, что способны испаряться без разложения в газовую фазу. На этот процесс, естественно, затрачивается часть энергии обратного теплового потока, воздействующего на полимер. Но основной эффект при применении антипиренов такого типа обусловлен тем, что их тяжелые пары изолируют пламя от кислорода. Предполагают, что так действует трикрезилфосфат в не образующих кокса полимерах: полиэтилене, полиметилметакрилате, полиоксиметилене. Вероятно, этот фактор действия фосфорсодержащих антипиренов может быть особенно существен при их применении для снижения горючести полимеров, не имеющих в своей структуре гидроксильных групп.

Широкое применение нашли антипирены, содержащие в одной молекуле атомы фосфора и галогена. Как правило, эффективность действия таких антипиренов или смесей фосфор- и галогенсодержащих соединений значительно выше, чем фосфор- или галогенсодержащих антипиренов, применяемых в отдельности.

Химическая структура может заметно влиять на эффективность фосфоргалогенсодержащих антипиренов. В этом отношении очень показательны результаты работы, авторы которой исследовали горючесть композиций полиметилметакрилата с трис -, трис -, фенилбис - и фенилбис фосфатами. Оказалось, что фосфаты с хлоризопропильными группами более эффективны, чем с хлорэтильными, несмотря на меньшее содержание фосфора и хлора. Такой, на первый взгляд, парадоксальный результат объясняется особенностями термического разложения фосфатов и различным их влиянием на термическую деструкцию полиметилметакрилата. Фосфаты с хлоризопропильными заместителями начинают разлагаться при более низкой температуре, чем фосфаты с хлорэтильными заместителями, причем первые разлагаются с поглощением, а вторые - с выделением тепла. Кроме того, трис фосфат и композиции полиметилметакрилата с ним образуют при термическом разложении значительно больше коксового остатка, чем трис фосфат. Если учесть, что в газообразных продуктах пиролиза композиций идентифицированы фосфаты и хлорсодержащие продукты их разложения, то можно сделать вывод о том, что суммарный эффект действия хлорированных фосфатов в полиметилметакрилате обусловлен как разбавлением горючих продуктов термической деструкции полимера менее горючими продуктами разложения антипиренов, так и образованием коксового слоя на поверхности горящего полимера. Таким образом, не трудно увидеть, что даже незначительные различия в структуре галогенированных фосфорсодержащих соединений могут быть причиной заметных различий в их эффективности как антипиренов.

Информация о работе Снижение горючести полимерных материалов