Синтез химико- технологической системы

Автор: Пользователь скрыл имя, 11 Апреля 2011 в 11:17, курсовая работа

Описание работы

Методы анализа, синтеза и оптимизации ХТС, реализованные в виде алгоритмов и программ, применяются в системах автоматизированного проектирования химических производств (САПР). Эти системы существенно повышают производительность труда проектировщиков и позволяют значительно улучшить качество проектов. Благодаря САПР ускоряется внедрение в производство технологических разработок.

Содержание

Введение 5
1. Теоретическая часть 6
1.1 Описание объекта исследования 6
1.2 Постановка задачи оптимизации 6
1.3 Описание метода наименьших квадратов 7
1.4 Описание метода Брандона 9
1.5 Реактор идеального вытеснения 12
1.6 Синтез оптимальных систем теплообмена 13
2. Расчетная часть 17
2.1 Расчет k0 и E в уравнении Аррениуса с использованием метода наименьших квадратов 17
2.2 Расчет зависимости kр(t) с использованием метода наименьших квадратов 20
2.3 Расчет статистической модели абсорбера с использованием метода Брандона 23
2.4 Расчет реакторов идеального вытеснения 33
2.5 Расчет абсорберов 35
2.6 Синтез оптимальных систем теплообмена 36
2.7 Расчет нагревателя 41
3. Выводы 43
Список литературы 44
Приложение

Работа содержит 1 файл

сахт.doc

— 638.50 Кб (Скачать)

      Код программы:

Dim nx As Integer, ng As Integer, n As Integer, n0 As Integer

Dim k As Single, c As Single, dt As Single, k0 As Single

Dim tn() As Single, tk() As Single, w() As Single

Dim tx() As Single, tg() As Single, nomx() As Integer

Dim nomg() As Integer, r() As Single, ne() As Single

Dim st() As Single 

Private Sub Command1_Click()

st0 = 0

k = 0

m1:

With MSFlexGrid1

.Cols = 9: .Col = 0: .Row = 0: .Text = "L": .Col = 1: .Text = "х": .Col = 2: .Text = "Tнх"

.Col = 3: .Text = "Tхк": .Col = 4: .Text = "г": .Col = 5: .Text = "Tнг"

.Col = 6: .Text = "Tгк": .Col = 7: .Text = "Q": .Col = 8: .Text = "Стоимость"

l = 0

k = k + 1

For i = 1 To n

If tn(i) < tk(i) Then GoTo m2

For j = 1 To n

If tn(j) > tk(j) Then GoTo m3

tg0 = tn(i): tg1 = tk(i)

tx0 = tn(j): tx1 = tk(j)

a = tg0 - tx0 - dt

If a < 0 Then GoTo m3

If (tg1 - tx0) < dt Then tg1 = tx0 + dt

If (tg0 - tx1) < dt Then tx1 = tg0 - dt

qx = (tx1 - tx0) * w(j)

qg = (tg0 - tg1) * w(i)

q = qx

If qx > qg Then q = qg

If q < 1 Then GoTo m3

tx1 = tx0 + q / w(j)

tg1 = tg0 - q / w(i)

dt1 = tg0 - tx1

dt2 = tg1 - tx0

r0 = Log(dt1 / dt2)

dlt = (dt1 + dt2) / 2

If Abs(r0) > 0.639 Then dlt = (dt1 - dt2) / r0

f = q / k0 / dlt

l = l + 1

st(l) = c * f ^ 0.6

st0 = st0 + st(l)

nomg(l) = i: nomx(l) = j: tg(l) = tg1: tx(l) = tx1

.Rows = l + 1

.Col = 0: .Row = l: .Text = CStr(l)

.Col = 1: .Text = CStr(j): .Col = 2: .Text = CStr(tx0)

.Col = 3: .Text = CStr(tx1): .Col = 4: .Text = CStr(i): .Col = 5: .Text = CStr(tg0)

.Col = 6: .Text = CStr(tg1): .Col = 7: .Text = CStr(q): .Col = 8: .Text = CStr(st(l))

m3:

Next j

m2:

Next i

End With

If l = 0 Then GoTo m4

If ne(k) = 1 Then Label5.Caption = "Выберите вариант теплообмена между потоками i и j для которых начальные температуры максимальны"

If ne(k) = 2 Then Label5.Caption = "Выберите вариант теплообмена  между потоками, который обеспечивает  максимальное количество передаваемого  тепла"

If ne(k) = 3 Then Label5.Caption = "Выберите для теплообмена горячий поток с наиболее высокой температурой на входе и холодный поток с наиболее высокой температурой на выходе из теплообменника"

If ne(k) = 4 Then Label5.Caption = "Выберите для теплообмена  холодный поток с наиболее низкой температурой на входе и горячий поток с наиболее низкой температурой на выходе из теплообменника"

If ne(k) = 5 Then Label5.Caption = "Выберите для теплообмена  пару потоков произвольным образом"

l = CInt(InputBox("Введите  номер варианта теплообмена:"))

i = nomg(l): j = nomx(l): tn(i) = tg(l): tn(j) = tx(l)

MSFlexGrid1.Clear

GoTo m1

m4:

Label7.Visible = True: Text4.Text = CStr(st0): Text4.Visible = True

End Sub 

Private Sub Form_Load()

Dim S As String, i As Integer

CommonDialog1.Action = 1

S = CommonDialog1.FileName

Open S For Input As #1

Input #1, nx, ng

n = nx + ng

Text1.Text = CStr(nx)

Text2.Text = CStr(ng)

n0 = nx * ng

Input #1, k0, c, dt

ReDim tn(1 To n) As Single, tk(1 To n) As Single, w(1 To n) As Single

ReDim tx(1 To n0) As Single, tg(1 To n0) As Single, nomx(1 To n0) As Integer

ReDim nomg(1 To n0) As Integer, r(1 To n0 + 2) As Single, ne(1 To n0 + 2) As Single

ReDim st(1 To n0) As Single

For i = 1 To n

Input #1, tn(i), tk(i), w(i)

Next i

Close #1

r0 = -100

dr0 = CInt(InputBox("Введите любое число из интервала 1-33:"))

For i = 1 To n0 + 2

r0 = r0 + dr0

r(i) = Rnd(r0)

Next i

Label4.Caption = ""

For i = 1 To n0 + 2

If r(i) >= 0 And r(i) < 0.2 Then ne(i) = 1

If r(i) >= 0.2 And r(i) < 0.4 Then ne(i) = 2

If r(i) >= 0.4 And r(i) < 0.6 Then ne(i) = 3

If r(i) >= 0.6 And r(i) < 0.8 Then ne(i) = 4

If r(i) >= 0.8 And r(i) < 1 Then ne(i) = 5

Label4.Caption = Label4.Caption + CStr(ne(i)) + "  "

Next i

End Sub 

      Результаты расчета: 

      Таблица 1 Таблица пар исходных потоков ( I этап синтеза)

    

     На  основании таблицы 1  для теплообмена выбран 8 поток, так как необходимо было выбрать для теплообмена холодный поток с наиболее низкой температурой на входе и горячий поток с наиболее низкой температурой на выходе из теплообменника.

 

       Таблица 2 Таблица пар результирующих и исходных потоков (II этап синтеза)

   

     На  основании таблицы 2 для теплообмена  выбран 7 поток, так как необходимо было выбрать вариант теплообмена между потоками, который обеспечивает максимальное количество передаваемого тепла. 

      Таблица 3 – Таблица пар результирующих и исходных потоков (III этап синтеза)

     На  основании таблицы 3 для теплообмена выбран 2 поток, так как необходимо было выбрать вариант теплообмена между потоками i и j, для которых начальные температуры максимальны. 

      Таблица 4 – Таблица пар результирующих и исходных потоков (IV этап синтеза)

 

     На  основании таблицы 4 для теплообмена  выбран 2 поток, так как необходимо было выбрать для теплообмена горячий поток с наиболее высокой температурой на входе и холодный поток с наиболее высокой температурой на выходе из теплообменника. 

      Таблица 5 – Таблица пар результирующих и исходных потоков (V этап синтеза)

     

     На  основании таблицы 5 для теплообмена выбран 2 поток, так как необходимо было выбрать поток произвольным образом.

     В результате синтеза системы теплообмена все потоки, кроме 1го холодного, достигли заданной температуры. Следовательно, его необходимо нагреть до нужной температуры, используя нагреватель.

2.7 Расчет нагревателя

 

     Для расчета используется программа, написанная в Visual Basic. 

      Код программы:

Private Sub Command1_Click()

Dim c As Single, dt As Single, qx As Single

Dim tx1 As Single, tx0 As Single, tg0 As Single

Dim tg1 As Single, Wx As Single, Wr As Single

Dim qg As Single, q As Single, dlt As Single, k0 As Single

Dim st As Single

c = 483: dt = 20: k0 = 0.01745

tg0 = CSng(Text3.Text)

tx0 = CSng(Text1.Text)

tx1 = CSng(Text2.Text)

Wx = CSng(Text6.Text)

Wr = CSng(Text7.Text)

tg1 = tx1 + dt

qx = (tx1 - tx0) * Wx

qg = (tg0 - tg1) * Wr

q = qx

If qx > qg Then q = qg

tx1 = tx0 + q / Wx

tg1 = tg0 - q / Wr: dtl = tg0 - tx1: dt2 = tg1 - tx0

dlt = (dt1 + dt2) / 2

f = q / k0 / dlt

st = c * f ^ 0.6

Text5.Text = CStr(st)

Text4.Text = CStr(tg1)

End Sub 

      Результаты расчета: 

Тепловая  схема будет иметь  следующий вид:

  

                                        577,06 
 

        414,34        425 
 

  

         430,73    566,4                    514,18 
 

  43,34 309,92      396,47    405 

       

                                411,87            506,15 435

         180                          485 

      50                                253,98                       350,129                  415 
 
 

      460

      195                                   410 

     Общая стоимость данной технологической  схемы составляет 1192555.42, которая была получена в результате расчета оптимальных технологических схем (1154145), а также учитывает стоимость нагревателя (38410.42).

 

3. Выводы

 

        В данной  курсовой работе были произведены следующие процессы оптимизации:

  1. С помощью метода наименьших квадратов получили минимальные отклонения экспериментальных значений константы скорости химической реакции от расчетных для нахождения предэкспоненциального множителя k0 и энергии активации химической реакции Е.
  2. С помощью метода наименьших квадратов получили минимальные отклонения экспериментальных значений константы равновесия от расчетных значений.
  3. С помощью метода Брандона получили статическую модель абсорбера, а также рассчитали все потоки на входе и выходе из реакторов.
 

    Выбранная схема теплообмена, состоящая из 5 реакторов и 1 нагревателя, позволяет достичь заданных начальных и конечных температур основных технологических потоков наиболее оптимальным из рассмотренных вариантов.

    Таким образом, рассчитанная в данной курсовой работе химико-технологическая система  обеспечивает эффективную реализацию заданной технологии. 

 

Список  литературы

 
      
  1. Методы  и средства автоматизированного  расчета химико-технологических  систем / Кузичкин Н. В., Саутин С. Н., Пунин  А. Е., Холоднов В.А., Шибаев В. А. – Л.: Химия, 1987. – 152с
  2. Химико-технологические системы. Синтез, оптимизация и управление / Д. Бальцер, В. Вайсс, В. К. Викторов и др. / Под ред. И. П. Мухленова. – Л.: Химия, 1986. -424 с. 
  3. Синтез оптимальных тепловых систем. Метод. указания / ЛТИ им. Ленсовета. Л.,1985

 

Приложение 1

      Зависимость константы скорости от температуры 

      Tº, C k, 1/c
      400 0.4
      405 0.4
      415 0.5
      435 0.6
      455 0.8
      485 1.3
      505 1.6
      515 1.8
      530 2.2
      575 3.5
      595 4.3
      605 4.7
      615 5.2

Приложение 2

    Зависимость константы равновесия от температуры 

      Tº, C kp
      400 443
      420 265
      440 112
      460 108
      480 72
      520 35
      540 25
      560 16
      580 12
      600 9.5
      620 7.0

Информация о работе Синтез химико- технологической системы