Автор: Пользователь скрыл имя, 16 Июня 2013 в 22:16, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Химия".
Серебро Наибольшую электропроводность из всех металлов имеет серебро. При комнатной температуре его удельное электрическое сопротивление составляет 0,0150 мкОмґ´м. Серебро пластично - относительное удлинение при растяжении порядка 50%. Кроме того, серебро обладает высокой теплоемкостью и теплопроводностью и высокой коррозионной стойкостью. У серебра высокая плотность - 10,49 Мг/м3, что в сочетании с плотноупакованной ГЦК решеткой свидетельствует о малом радиусе иона. Поэтому серебро активно диффундирует в керамику, что позволяет создавать прочные покрытия керамики серебром (керамические конденсаторы).
К недостаткам серебра как проводникового материала относятся его стоимость, а также взаимодействие серебра с серой с образованием Ag2S.
Медь–обладает достаточно малым удельным электросопротивлением (0,0168 мкОмґ´м), пластична и обладает высокой прочностью. Хотя медь относится к той же подгруппе что и серебро и золото, но она более активна и образует соединения с О2, СО2, Н2О. Поэтому при пайке и сварке меди приходится использовать флюсы – вещества, удаляющие с поверхности материала оксиды. Важно отметить, что химические соединения меди нестойки и удаляются простейшим флюсом – раствором канифоли в спирте или ацетоне.
Алюминий Удельное сопротивление алюминия в 1,6 раз выше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря этому при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных, несмотря на большее поперечное сечение. К тому же алюминий дешевле меди. Указанные обстоятельства привели к широкому применению алюминия в электротехнике.
Недостатком алюминия является низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь. Для повышения прочности алюминий легируют элементами, плохо растворяющимися в основном металле, или образующими интерметаллидные соединения. Так, при легировании алюминия магнием и кремнием в алюминиевой матрице образуются частицы силицида магния, затрудняющие движение дислокаций.
Материалы высокого электрического сопротивления используются для поглощения электрической энергии и преобразования ее в тепло. Очевидно, что к таким материалам будут предъявляться следующие требования:
Очевидно, что для того, чтобы материал имел высокое удельное сопротивление, он должен представлять собой твердый раствор одного металла в другом. Причем хотя бы один из компонентов сплава должен быть переходным металлом. Из теории сплавов известно, что неограниченное растворение одного металла в другом возможно при близости размеров ионов и одинаковом типе кристаллических решеток.
Константан. Твердый раствор 40% никеля в меди, точнее 40%Ni, 1,5%Mn, остальное медь. Этот сплав маркируется как НММц 58,5-1,5. Наименование этого сплава подчеркивает неизменность его сопротивления при изменении температуры. Практически при изменении температуры от –100°°С до +100°°С. его удельное сопротивление остается постоянным, то есть температурный коэффициент сопротивления (aarr) равен 0. У данного сплава довольно-таки высокое удельное сопротивление (0,5 мкОмґ´м), он пластичен и прочен. При нагреве на его поверхности образуется окисная пленка, обладающая изоляционными свойствами. Оксидная изоляция позволяет плотно навивать константановую проволоку если напряжение между витками не превышает 1 В.
Никелин. МНМц30-1,5 (68,5% Cu; 30%Ni; 1,5% Mn). Из-за меньшего содержания никеля сплав более дешев, однако его удельное сопротивление меньше чем у константана (rr=0.35 мкОмґ´м). Кроме того, температурный коэффициент удельного электросопротивления сплава отличен от нуля. Главным образом этот сплав используют для изготовления пусковых и регулировочных реостатов.
Нейзильбер. МНЦ15-20 (65%Cu, 15%Ni, 20%Zn). Замена никеля более дешевым цинком приводит к существенному уменьшению стоимости сплава. Вместе с тем сплав обладает достаточно высоким удельным сопротивлением (rr=0.3 мкОмґ´м). Столь высокое удельное сопротивление вызвано тем, что у размер иона цинка меньше размера иона меди, а размер иона никеля больше размера иона меди. Поэтому суммарные искажения кристаллической решетки велики, что затрудняет продвижение электронной волны.
Манганин. МНМц-3-12 (80%Cu, 3%Ni, 12%Mn). Достаточно дешевый сплав, отличающийся высоким удельным сопротивлением (rr=0.45 мкОмґ´м), и низкой термо-Э.Д.С в паре с медью. Недостатком сплава является низкая коррозионная стойкость и невысокая предельная рабочая температура (<<200°°С).
Нихромы. Классическим никель-хромовым сплавом является сплав Х20Н80 (20%Cr, 80%Ni). При комнатной температуре в никеле растворяется 20% хрома. При этом хотя и сохраняется ГЦК решетка никеля, но она сильно искажается ионами хрома. Это обстоятельство в сочетании с тем, что и никель и хром являются переходными металлами приводит к высокому удельному сопротивлению сплава (rr=1,1 мкОмґ´м). Поверхность нихрома покрыта химически стойкими окислами, которые затрудняют пайку нихрома и защищают его от окисления при высоких температурах. Для повышения механической прочности в нихром вводят титан, молибден, кремний.
Типичным представителем этой группы сплавов является сплав 0Х27Ю5 (23%Cr, 5%Al, остальное железо). Сплав отличается высоким удельным сопротивлением (rr=1,1 мкОмґ´м). Замена никеля на железо приводит к существенному удешевлению сплава, а наличие хрома и алюминия обеспечивают высокую стойкость к окислению. Недостатками сплавов такого типа является низкая пластичность, вызванная образованием интерметаллидных соединений.
В ряде случаев требуется высокая стойкость к окислению материала. В этом случае используют материалы высокого сопротивления на основе благородных металлов: серебра, платины, палладия.
Все контакты можно разделить на неподвижные и подвижные. Неподвижные контакты используются для длительного соединения и могут быть зажимными и цельнометаллическими. Подвижные контакты могут быть разрывными и скользящими.
а) В зажимных контактах («клеммы», болтовые соединения и т.д.) действительная поверхность контакта заметно меньше поверхности налагаемых друг на друга проводников. Это связано с наличием на поверхности сопрягаемых деталей неровностей и слоя окислов. Поэтому чем мягче материал контактов и чем выше его коррозионная стойкость, тем меньше сопротивление контакта. В этой связи контакты обычно облуживают – покрывают слоем олова. Для особо надежных контактов применяют серебрение или золочение.
б) Цельнометаллическими являются сварные или паянные соединения. Основными материалами, образующими цельнометаллические контакты являются припои и сварочные присадки.
Припои должны обладать следующими свойствами:
Принято припои делить на мягкие (с температурой плавления ниже 300°°С и пределом прочности 16-100МПа) и твердые с температурой плавления превышающей 300 °°С и пределом прочности 100-500 МПа.
В качестве мягких припоев обычно используют сплавы свинца с оловом. Такие припои маркируют буквами ПОС с цифрами показывающими содержание олова в припое, например ПОС 62.
Выбор в качестве компонентов припоя свинца и олова обусловлен тем, что свинец и олово хорошо растворяются друг в друге в жидком состоянии и плохо растворяются в твердом состоянии.
В качестве твердых припоев используют чистую медь, сплавы меди с цинком (ПМЦ), сплавы меди с фосфором и сплавы на основе серебра (ПСр). Цифры в марках медно цинковых припоях показывают содержание меди, а в марках серебряных припоев показывают содержание серебра.
Помимо припоев, при пайке используют флюсы – вещества, удаляющие окислы с поверхности паяемых изделий и защищающие поверхность расплавленного припоя от окисления.
При пайке изделий из сплавов меди мягкими припоями в качестве флюса используют канифоль или ее раствор в спирте или ацетоне. Канифоль – это смесь органических кислот, которые хорошо растворяют окислы меди.
При пайке стальных деталей мягкими припоями в качестве флюса используют водный раствор хлорида цинка («травленная соляная кислота») или нашатырь – хлористый аммоний.
При пайке твердыми припоями в качестве флюса используют буру, борную кислоту, расплавы хлоридов металлов.
После пайки рекомендуется удалять любые флюсы, для того чтобы повысить сопротивление коррозии паяного шва.
Разрывные контакты периодически замыкаются и размыкаются. При этом между контактными площадками образуется электрическая дуга. Возникновение дуги ведет к росту температуры, а, следовательно, к снижению механической прочности, окислению материала контактов, появляется вероятность их сваривания, а также возможна эрозия материала.
Для того чтобы материал разрывных контактов надежно работал, он должен удовлетворять следующим требованиям:
Кроме того, материал должен быть дешевым и недефицитным.
Для малоответственных разрывных контактов (бытовые выключатели) в качестве материала обычно выбирают латунь – сплав меди с цинком. Наличие в сплаве цинка приводит к повышению механической прочности и росту коррозионной стойкости
Для ответственных контактов работающих при малых напряжениях и коммутирующих малые токи (контакты маломощных реле) используют серебро.
В тех случаях, когда рабочее напряжение на контактах велико, на токи не большие используют металлы платиновой группы (платину, палладий, иридий, осмий, рутений и родий). При коммутации больших токов, когда нагрев контактов велик, используют композиционные материалы (порошки вольфрама или молибдена пропитанные жидкой медью или серебром). Для мощных контактов также используют металлокерамические композиции – серебро и окись кадмия (СОК).
В основном, к материалам скользящих контактом предъявляются те же требования, что и к материалам разрывных контактов. Однако особенно остро ставится вопрос об уменьшении износа при трении. Для снижения износа трения можно повысит твердость материала контактирующих пар и использовать смазку. Естественно, что смазка должна быть электропроводной.
Для коллекторов электрических моторов используют холоднодеформированную медь, а для щеток используют графит. Для тяжелонагруженных машин для изготовления щеток используют металлографитовые щетки – медно-графитовые и бронзо-графитовые.
Полупроводниками принято
называть вещества, электропроводность
которых обусловлена
37.Обозначим концентрацию электронов n0i, а концентрацию дырок p0i. Индекс i (от слова intrinsic – собственный, присущий) у концентрации электронов и дырок означает, что это собственные носители заряда. В результате процессов возбуждения и рекомбинации при любой температуре устанавливается равновесная концентрация носителей заряда:
электронов
(5.1)
и дырок
(5.2)
где: n0i - концентрация электронов, p0i- концентрация дырок, W -ширина запрещенной зоны. Коэффициент 2 показывает, что на каждом энергетическом уровне могут быть два электрона.
Проводимость полупроводников будет равна:
(5.3)
где: mmп – подвижность электронов, а mmр – подвижность дырок.
Рис. 52. Влияние легирования на энергетические зоны полупроводников: а) собственный полупроводник, б) полупроводник, содержащий донорные примеси, в) полупроводник, содержащий акцепторные примеси.