Автор: Пользователь скрыл имя, 10 Января 2012 в 01:21, курсовая работа
Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление.
Энергетические щели
Для развития динамической модели будем полагать, что второй электрон движется по поляризованному следу первого электрона. При этом возможны две ситуации: первая - импульсы электронов одинаковы по величине и направлению, то есть они образуют пару частиц с удвоенным импульсом, вторая - импульсы электронов одинаковы по величине и противоположны по направлению. Такую корреляцию электронов также можно рассматривать, как пару с нулевым импульсом. Если электроны, кроме того, будут иметь противоположные спины, то такая пара будет обладать уникальными свойствами.
Чрезвычайно
интересным с точки зрения понимания
механизма сверхпроводимости
Распределение электронов в нормальном металле описывается функцией Ферми-Дирака
f(E)=(e (E-m)/(kT)+ 1)-1.
Где k - постоянная Больцмана; m - химический потенциал.
При температуре Т=0 К полная функция распределения N(E)=f(E)g(E), определяющая число частиц с энергией Е, равна плотности числа состояний g(E), так как f(E)=1:
g(E)=((4pV)/ n3)(2m)3/2Е1/2.
График этой функции представлен на рис.6а
Взаимодействие
электронов в сверхпроводнике с
образованием куперовских пар приводит
к тому, что небольшая область
энергии вблизи уровня Ферми становится
запрещенной для электронов - возникает
энергетическая щель. В пределах этой
щели нет ни одного разрешенного для
неспаренных электронов энергетического
уровня. Под влиянием взаимодействия между
электронами, имеющими энергию, близкую
к Еf, они оказываются как бы сдвинутыми
относительно уровня Ферми.
Рисунок 1. Зависимость ширины энергетической щели от температуры.
d(T)
d0
1 Т
1 Тc
При Т=0 К ширина щели максимальна (2d0>>10-2 - 10-3 эВ), а все свободные (неспаренные) электроны находятся под щелью (на уровне с энергией меньше Еf). При повышении температуры часть куперовских пар разрушается, а некоторые неспаренные электроны “перескакивают” щель и заполняют состояния с энергией больше Еf. Ширина щели 2d(T) при этом уменьшается (рис.7).
Между максимальной (при Т=0 К) шириной щели 2d0 и критической температурой Тc существует прямая зависимость. По теории БКШ, удовлетворительно согласующейся с экспериментальными данными для большого числа сверхпроводников (кроме Nb, Ta, Pb, Hg):
2d0=3,5 kTс.
Ширина щели по этому соотношению определяется в эВ.
Высокотемпературная сверхпроводимость
Рассмотренный ранее механизм перехода в сверхпроводящее состояние основан на межэлектродном взаимодействии посредством кристаллической решетки, то есть за счет обмена фононами. Как показывают оценки, для такого механизма сверхпроводимости, называемая фононным, максимальная величина критической температуры не может превышать 40 К.
Таким образом, для реализации высокотемпературной сверхпроводимости (с Тc>90 К) необходимо искать другой механизм корреляции электронов. Один из возможных подходов описан подходов описан американским физиком Литтлом. Он предположил, что в органических веществах особого строения возможна сверхпроводимость при комнатных температурах. Основная идея заключалась в том, чтобы получить своеобразную полимерную нитку с регулярно расположенными электронными фрагментами. Корреляция электронов, движущихся вдоль цепочки, осуществляется за счет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на несколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме.
В
основе теоретической модели высокотемпературной
сверхпроводимости, разработанной
академиком В.Л.Гизбургом, лежит так
называемый экситонный механизм взаимодействия
электронов. Дело в том, что в электронной
системе существуют особые волны - экситоны.
Подобно фононам они являются
квазичастицами, перемещающимися по
кристаллу и не связанными с переносом
электрического заряда и массы. Модельный
образец такого сверхпроводника
представляет собой металлическую
пленку в слоях диэлектрика или
полупроводника. Электроны проводимости,
движущиеся в металле, отталкивают
электроны диэлектрика, то есть окружают
себя облаком избыточного
ИСПОЛЬЗОВАНИЕ СВЕРХПРОВОДИМОСТИ.
Идея высокотемпературной
сверхпроводимости ( ВТСП ) в органических
соединениях была выдвинута в
1950г. Ф.Лондоном и лишь 14 лет
спустя появился отклик на
эту идею в работах
Ключевым
для проблемы ВТСП является вопрос
критической температуры от характеристики
вещества. С открытием в 86 нового
класса сверхпроводящих материалов
с более высокими, чем ранее
критическими температурами, во всем мире
развернулись работы по изучению по изучению
свойств ВТСП с целью определения
возможности их применения в различных
областях науки и техники. Интерес
к ВТСП объясняется в первую очередь
тем, что повышение рабочей
Основные характеристики композитных ВТСП-проводников.
Традиционные сверхпроводники второго рода (сплавы Nb - Ti, соединение Nb3Sn ) применяются в сверхпроводящих магнитных системах в виде композитов с матрицей из нормального метала с высокими тепло- и электропроводностью. Наличие пластичной матрицы (чаще всего медной) значительно облегчает изготовление тонких длинномерных проводников волочением или прокаткой, то есть сверхпроводящие материалы отличаются хрупкостью. Стабильность сверхпроводимости - состояние относительно скачков магнитного потока - достигается путем изготовления проводников с весьма малым диаметром отдельных сверхпроводящих или же лент с малой толщиной сверхпроводящего слоя. По этим же причинам ВТСП-проводники в большинстве случаев изготавливаются в форме композитов, имеющих малую толщину или диаметр. Дополнительная причина применения нормального металла связана с необходимостью защиты ВТСП-материала от влажности и других факторов окружающей Среды, вызывающих деградацию оксидного сверхпроводника. Наилучшие результаты получены при использовании серебряной матрицы или обмотки сверхпроводника: кроме того, что серебро лишь в минимальной степени реагирует с ВТСП или его исходной продукции даже при высокой температуре синтеза, серебро отличается высокой диффузионной проницательностью для кислорода, что необходимо при синтезе и обжиге ВТСП.
В настоящее время все усилия в области ВТСП наряду с совершенствованием их свойств и способов получения направлены на создание изделий на основе ВТСП, пригодных для применения в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. (см. рис.1).
Основными
достоинствами ВТСП являются отсутствие
потерь на постоянном и сравнительно
небольшие потери на переменном токах,
возможность экранирования
Параметром,
непосредственно определяющим высокочастотные
свойства ВТСП материалов является их
поверхностное сопротивление. В
обычных металлах поверхностное
сопротивление увеличивается
Интерес
к вопросу практического
Применение сверхпроводников потребовало решения ряда новых задач, в частности, интенсивного развития материаловедения в области низких температур. При этом исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.
Наибольшее распространение из
сверхпроводящих материалов в
электротехнике получили сплав
ниобий-титан и интерметаллид
ниобий-олово. Технологические
Развитие сверхпроводниковой техники также связано с созданием ожижителей и рефрижераторов все большей хладопроизводительности на уровне температур жидкого гелия.
Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. В 80-х гг в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.
Сверхпроводящие
катушки используются также для
пузырьковых водородных камер, для
крупных ускорителей
В последние годы имеет место все более широкое использование явления сверхпроводимости для турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др.. Следует также отметить важное направление в работах по сверхпроводимости - создание измерительных устройств для измерения температур, расходов, уровней, давлений и т.д.
На настоящий момент имеются два главных направления в области применения сверхпроводимости. Это прежде всего магнитные системы различного назначения и затем - электрические машины (прежде всего турбогенераторы).