Электролиты и их свойства

Автор: Пользователь скрыл имя, 04 Апреля 2011 в 18:20, курсовая работа

Описание работы

Водные растворы солей, кислот и оснований обладают некой особенностью — они проводят электрический ток. При этом безводные твердые соли и основания, а также безводные кислоты тока не проводят; почти не проводит тока и чистая вода. Очевидно, что при растворении в воде подобные вещества подвергаются каким-то глубоким изменениям, которые и обусловливают электропроводность получаемых растворов.

Работа содержит 1 файл

ТОПТ. КУРСОВАЯ.doc

— 504.50 Кб (Скачать)

Введение.

     Водные  растворы солей, кислот и оснований обладают некой особенностью — они проводят электрический ток. При этом безводные твердые соли и основания, а также безводные кислоты тока не проводят; почти не проводит тока и чистая вода. Очевидно, что при растворении в воде подобные вещества подвергаются каким-то глубоким изменениям, которые и обусловливают электропроводность получаемых растворов.

     Например, при прохождении тока через раствор серной кислоты, происходит разложение воды на составные части – водород и кислород, выделяющиеся на пластинах, соединенных соответственно с отрицательным и положительным полюсами батареи. Такого рода растворы, разлагающиеся химически при прохождении через них тока, будем называть электролитами, а сам процесс разложения вещества электрическим током – электролизом.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Определение электролитов. 

     Можно сказать, что электролиты – это  вещества, в которых в заметной концентрации присутствуют ионы, обусловливающие  прохождение электрического тока (ионную проводимость). Электролиты также имеют название проводников второго рода.

     В узком смысле слова электролиты – вещества, молекулы которых в растворе, вследствие электролитической диссоциации, распадаются на ионы. Среди электролитов различают твердые, растворы электролитов и ионные расплавы. Растворы электролитов часто также называют электролиты. В зависимости от вида растворителя электролиты делятся на водные и электролиты неводные. К особому классу относятся высокомолекулярные электролиты – полиэлектролиты.

     В соответствии с природой ионов, образующихся при электролитической диссоциации  водных растворов, выделяют солевые  электролиты (в них отсутствуют  ионы Н+ и ОН-), кислоты (преобладают ионы Н+) и основания (преобладают ионы ОН-). Если при диссоциации молекул электролитов число катионов совпадает с числом анионов, то такие электролиты называют симметричными (1,1 -валентными, например, КСl, 2,2-валентными, например, CaSO4, и т.д.). В противном случае электролиты называют несимметричными (1,2-валентные электролиты, напр. H2SO4, 3,1-валентные, например, А1(ОН)3, и т.д.). В зависимости от способности к электролитической диссоциации электролиты условно разделяют на сильные и слабые. Слабые электролиты характеризуются, прежде всего, константой и степенью диссоциации, а сильные активностью ионов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1.Слабые  электролиты. Константа и степень диссоциации. 

     Молекулы  слабых электролитов лишь частично диссоциированы на ионы, которые находятся в динамическом равновесии с недиссоциирующими молекулами. К слабым электролитам относятся многие органические кислоты и основания в водных и неводных растворителях. Степень диссоциации зависит от природы растворителя, концентрации раствора, температуры и других факторов( <1). Один и тот же электролит при одинаковой концентрации, но в различных растворителях образует растворы с различной степенью диссоциации.

     В растворах слабых электролитов устанавливается равновесие между недиссоциированными молекулами и продуктами их диссоциации — ионами. Например, в водном растворе уксусной кислоты устанавливается равновесие

СНзСООН         Н+ + СН3СОО- 

константа которого (константа диссоциации) связана с концентрациями соответствующих частиц соотношением:

        

К = [н+] [сн3соо-]

[сн3соо]

     Степенью  диссоциации а электролита называется доля его молекул, подвергшихся диссоциации, т. е. отношение числа молекул, распавшихся в данном растворе на ионы, к общему числу молекул электролита в растворе.

     В случае электролита MX, диссоциирующего на ионы М+ и Х-, константа и степень диссоциации связаны соотношением (закон разбавления Оствальда)

К = а2С/1 - а

где С — молярная концентрация электролита, моль/л.

     Если  степень диссоциации значительно  меньше единицы, то при приближенных вычислениях можно принять, что 1 - а 1. Тогда выражение закона разбавления упрощается:

     К = а2С

     Отсюда

     

     Последнее соотношение показывает, что при  разбавлении раствора (т. е. при уменьшении концентрации электролита С) степень диссоциации электролита возрастает.

     Если  в растворе электролита MX степень его диссоциации равна а, то концентрации ионов М+ и Х- в растворе одинаковы и составляют:

[М+]=[Х-]=аС

Подставив сюда значение а из предыдущего соотношения, находим:

     [М+]=[Х-]=С =

     

     

     Для расчетов, связанных с диссоциацией кислот, часто удобно пользоваться не константой К, а так называемым показателем константы диссоциации рК, который определяется соотношением

рК  = - lg К

     Очевидно, что с возрастанием К, т. е. с увеличением силы кислоты, значение рК уменьшается; следовательно, чем больше рК, тем слабее кислота.

     При введении в раствор слабого электролита  одноименных ионов (т. е. ионов, одинаковых с одним из ионов, образующихся при диссоциации электролита) равновесие диссоциации нарушается и смещается в направлении образования недиссоциированных молекул, так что степень диссоциации электролита уменьшается. Так, прибавление к раствору уксусной кислоты ее соли (например, ацетата натрия) приведет к повышению концентрации ионов СН3СОО - и, в соответствии с принципом Ле Шателье, равновесие диссоциации

СНзСООН         Н+ + СН3СОО-

сместится влево.

     В растворах многоосновных кислот, а также оснований, содержащих несколько гидроксильных групп, устанавливаются ступенчатые равновесия, отвечающие последовательным стадиям диссоциации. Так, диссоциация ортофосфорной кислоты протекает в три ступени, 

Н3РО4 Н+ + Н2РО4-          (К1=7,5 . 10-3) 

Н2РО4Н+ + НРО42-     (К2=6,3 . 10-8) 

НРО42-Н+ + РО43-          (К3=1,3 . 10-12) 

каждой  из которых отвечает определенное значение ступенчатой константы диссоциации. Поскольку К1 >> К2 >>К3, то в наибольшей степени протекает диссоциация по первой ступени, а при переходе к каждой последующей стадии степень диссоциации, как правило, резко уменьшается.

     Диссоциация электролита приводит к тому, что  общее число частиц растворенного  вещества (молекул и ионов) в растворе возрастает по сравнению с раствором неэлектролита той же молярной концентрации. Поэтому свойства, зависящие от общего числа находящихся в растворе частиц растворенного вещества (коллигативные свойства), — такие, как осмотическое давление, понижение давления пара, повышение температуры кипения, понижение температуры замерзания — проявляются в растворах электролитов в большей степени, чем в равных по концентрации растворах неэлектролитов. Если в результате диссоциации общее число частиц в растворе электролита возросло в i раз по сравнению с числом его молекул, то это должно быть учтено при расчете осмотического давления и других коллигативных свойств. Формула для вычисления понижения давления         ∆р пара растворителя приобретает в этом случае следующий вид:

     р= р0 in2/п1+ in2

     Здесь

     р0 — давление насыщенного пара над чистым растворителем;

     п2 — число молей растворенного вещества;

     п1 — число молей растворителя;

     i — изотонический коэффициент или коэффициент Вант-Гоффа.

     Аналогично  понижение температуры кристаллизации  ∆tкрист и повышение температуры кипения ∆tкип раствора электролита находят по формулам

     tкрист =iKm

     tкип =iEm

где m — моляльная концентрация электролита, а К и Е — соответственно, криоскопическая постоянная и эбуллиоскопическая постоянная растворителя.

     Наконец, для вычисления осмотического давления (Р, кПа)  раствора электролита используют формулу

     Р =iCRT

где С — молярная концентрация электролита, моль/л; R — газовая постоянная (8,31 Дж . моль-1 . К-1); Т — абсолютная температура, К.

     Нетрудно  видеть, что изотонический коэффициент i может быть вычислен как отношение ∆р , ∆tкрист, ∆tкип, Р, найденных на опыте, к тем же величинам, вычисленным без учета диссоциации электролита   (∆рвыч, ∆tкрист.выч, tкип.выч, Рвыч): 

     i=∆р/∆рвыч=∆tкрист/∆tкрист.выч=∆tкип/∆tкип.выч=Р/ Рвыч 

     Изотонический коэффициент i связан со степенью диссоциации электролита а соотношением 

     i=1+a (k - 1) или  

где k — число ионов, на которые распадается при диссоциации молекула электролита (для КСl k = 2, для ВаСl2 и Na2SO4 k =3 и т. д.).

     Таким образом, найдя по опытным величинам ∆р,tкрист и т. п. значение i, можно вычислить степень диссоциации электролита в данном растворе. При этом следует иметь в виду, что в случае сильных электролитов найденное таким способом значение а выражает лишь «кажущуюся» степень диссоциации, поскольку в растворах сильные электролиты диссоциированы полностью. Наблюдаемое отличие кажущейся степени диссоциации от единицы связано с межионными взаимодействиями в растворе. 

1.2. Сильные электролиты.  Активность ионов. 

     Сильными электролитами называются такие электролиты, степень диссоциации которых в растворах равна единице (т.е. диссоциируют полностью) и не зависит от концентрации раствора. К ним относятся большинство солей, которые уже в кристаллическом состоянии построены из ионов, гидроксиды щелочных и щелочноземельных металлов, некоторые кислоты (НСl, HBr, HI, HClO4, HNO3).

     В растворах сильных электролитов концентрация ионов  довольно   велика,   так   что   силы   межионного взаимодействия заметно  проявляются даже при малой   концентрации  электролита.   В   результате   ионы оказываются не вполне свободными в своем движении, и все свойства электролита, зависящие от числа ионов, проявляются слабее, чем следовало бы ожидать   при   полной   диссоциации   электролита   на   не взаимодействующие между собой ионы. Поэтому для описания   состояния ионов   в   растворе   пользуются, наряду с концентрацией ионов, их активностью, т. е. условной (эффективной) концентрацией ионов, в соответствии с которой они действуют в химических процессах. Активность иона а (моль/л) связана с его молярной концентрацией в растворе С соотношением

     a = fC

где f — коэффициент активности иона   (безразмерная величина).

      Коэффициенты  активности ионов зависят от состава и концентрации раствора, от заряда и природы лона и от других условий. Однако в разбавленных растворах (С ≤ 0,5 моль/л) природа иона слабо сказывается на величине его коэффициента активности. Приближенно можно считать, что в разбавленных растворах коэффициент активности иона в данном растворителе зависит только от заряда иона и ионной силы раствора I, которая равна полусумме произведений концентрации С каждого иона на квадрат его заряда z:

     I=0,5 (С1 z12 + С2 z22 + + Сn zn2)=0,5       Сi z i

     В табл. 1 приведены значения коэффициентов активности ионов в разбавленных растворах в зависимости от их заряда и ионной силы раствора. Приближенно коэффициент активности иона в разбавленном растворе можно также вычислить по формуле: lg f = — 0,5z2 - .

                                                        Таблица 1. 

Информация о работе Электролиты и их свойства