История развития органической химии

Автор: Пользователь скрыл имя, 16 Декабря 2011 в 13:52, реферат

Описание работы

Органическая химия раздел химии (См. Химия), естественнонаучная дисциплина, предметом изучения которой являются соединения углерода с др. элементами, называемые органическими соединениями, а также законы превращения этих веществ. Углерод образует соединения с большинством элементов и обладает наиболее выраженной способностью по сравнению с др. элементами к образованию молекул цепного и циклического строения.

Работа содержит 1 файл

Новый документ в формате RTF.rtf

— 269.80 Кб (Скачать)

Среди органических коллектров различают в основном три вида:

1)   малорастворимые ассоциаты, состоящие из объемистого органического катиона и ониона (например, катион кристаллического фиолетового или метиленового синего или тиоцианат иои иодид);

2)   хелаты (дитиокарбоминаты, дитизонаты, b-дикетоны и др.);

3)   органические индифферентные соединения, которые не содержат комплексообразующих групп.

В качестве физических методов используют методы испарения: отгонку, перегонку (дисцилляцию), возгонку (сублимацию) и др.

Отгонка (выпаривание) - это одноступенчатый процесс разделения и концентрирования. При выпаривании удаляются вещества, которые находятся в форме готовых летучих соединений, ими могут быть и основа и примеси, причем последние отгоняют реже. Выпаривание проводят разными способами, например нагреванием снизу (с помощью водяной бани) или с верху (под инфракрасной лампой). В первом случае потери могут достигать до 50 - 70 %, во втором - меньше. Распространена отгонка с предварительным химическим превращением, как основы, так и примесей в легколетучие соединения в результате химических реакций. Один из таких методов - сжигание органических и биологических проб (сухая и мокрая минерализация). Сухую минерализацию проводят путем сжигания вещества в трубчатых печах в атмосфере воздуха или кислорода. Образующиеся летучие соединения CO, CO2, N2, SO2, SO3, H2O и другие улавливают с помощью адсорбционных систем и определяют. Мокрую минерализацию проводят в растворах анализируемых веществ, получая легколетучие соединения добавлением концентрированных кислот, их смесей или сильных окислителей (H2O2, KClO3, KMnO4 и др.).

Перегонка (дистилляция) - разделение жидких смесей на фракции различных составов путем их частичного испарения с последующей конденсацией образовавшихся паров. Разделение основано на различии температур кипения жидкостей, составляющих данную смесь. Используют при анализе органических и неорганических смесей.

Возгонка (сублимация) - это перевод вещества из твердого в газообразное состояние, минуя жидкую фазу. К возгонке прибегают, когда разделяемые компоненты трудно плавятся или растворяются. Использование метода ограничено небольшим числом сублимирующихся веществ.

В качестве физико-химических методов применяют экстракцию, сорбцию, ионный обмен, хроматографию и различные электрохимические методы, например электролиз, электрофорез, электродиализ и др.

Экстракция - это процесс извлечения одного или нескольких веществ из раствора путем добавления к нему другого растворителя, значительно лучше растворяющим извлекаемые вещества, но не смешивающимся с первым растворителем. Разделение основано на различной растворимости веществ в различных растворителях. Экстракцию широко используют для разделения смесей элементов.

Сорбция - это процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами). В качестве поглотителей используют различные высокопористые вещества: активные (активированные) угли, силикагель, диатомовую землю, желеобразные гели с различным размером пор между их частицами, а также различные органические поглотители (цеолиты). Сорбция веществ может происходить на поверхности сорбента (адсорбция), или всем  его объемом (абсорбция), или путем образования химических соединений между материалом сорбента и разделяемыми веществами (хемосорбция). Активные угли получают при действии на уголь неактивных паров H2O или CO2 при 850 - 950 С0. При этом часть угля выгорает и получается активный уголь, пронизанный порами с радиусом менее 1 нм.  Активные угли используют в качестве эффективных сорбентов для извлечения Pb из атмосферного воздуха; Ca, Ba, Sr из концентрированных растворов солей, щелочей и других соединений; Cr, Mo, V из воды и др. Силикагель - это высушенная кремниевая кислота: 

Na2SiO3 + 2HCl = H2SiO3¯ + 2NaCl

H2SiO3® SiO2 +H2O

Ионный обмен основан на разделении смеси ионов с помощью твердых веществ ионитов, способных обменивать свои ионы на ионы раствора, который  пропускают через  слой ионита (подробнее см. гл.).

Хроматография - это совокупность методов разделения и анализа смесей с помощью подвижной и неподвижной фаз хроматографической системы, которые не смешиваются друг с другом. Разделение основано на различном сродстве компонентов смеси к этим фазам, а за счет этого - на различной скорости перемещения компонентов в потоке подвижной фазы относительно слоя неподвижной фазы  (подробнее см. гл. 2.6 и 2.7).

Электролиз - это совокупность методов разделения и анализа растворов электролитов, основанная на протекании в нем окислительно-восстановительной реакции под действием пропускаемого через электролит  электрического тока, с выделением продуктов электролиза на электродах. Разделение основано на различной способности веществ выделяться на электродах в зависимости от величины тока или напряжения электролиза.

Электрофорезом называется движение заряженных диспергированных (раздробленных) частиц в жидкости под действием электрического поля. Разделение основано на различной подвижности частиц различных веществ в электрическом поле постоянного тока.

Электродиализ - это ускоренная форма диализа, основанного на разделении растворенных частиц, значительно различающихся между собой размерами и массой, с помощью полупроницаемой мембраны. При электродиализе скорость движения частиц через мембрану задается электрическим полем. Для его создания по обе стороны мембраны помещаются электроды, на которые подается внешнее напряжение. Например, с помощью электродиализа можно отделить примеси электролитов от чистого растворителя, используя мембрану проницаемую для ионов электролита.05.18.12 «Процессы и аппараты пищевых производств» 

по техническим наукам 

Введение 

Настоящая программа обобщает последние достижения науки, техники и передовых технологий, обеспечивающие увеличение производства пищевой продукции и внедрение в эти процессы прогрессивных физических методов обработки пищевых продуктов. 

Программа разработана экспертным советом Высшей аттестационной комиссии по сельскохозяйственным наукам (инженерным агропромышленным специальностям) при участии Московского государственного университета пищевых производств. 

1. Основные понятия и законы, принципы оптимизации процессов 

Значение внедрения новых достижений науки, техники и передовой технологии для увеличения производства пищевой продукции, расширения ее ассортимента и повышения качества. Роль в народном хозяйстве создания энергоресурсосберегающих экологически чистых технологий и высокопроизводительного оборудования, способного обеспечить глубокую, при возможности безотходную переработку сырья. Прогрессивные физические методы обработки пищевых продуктов и нетрадиционные технологии их производства. 

1.1. Основные понятия. 

Характеристика понятия «технологический процесс», его отличие от естественных процессов. Технология как наука. «Механическая» и «химическая» технология. Понятие о биотехнологии, теплотехнологии. Общность операций (процессов) различных производств -- основа создания курса «Процессы и аппараты пищевых производств». Значение обобщения в свете задач развития технического прогресса. Состав, структура и свойства перерабатываемых продуктов. Классификация процессов пищевых производств. 

1.2. Основные законы технологических процессов и методы расчета аппаратов. 

Задачи технического прогресса и развития машиностроения, создание технологического потока. Технологические линии пищевых производств, создание автоматических линий и машин. 

Машинно-аппаратурные схемы пищевых производств. Потоки основного сырья. Однолинейные, многолинейные, сходящиеся, расходящиеся, смешанные машинно-аппаратурные схемы. Структурная схема машин и агрегатов пищевых производств. Классификация машин пищевых производств. Основные признаки классификации, характер воздействия на обрабатываемый продукт, структура рабочего цикла, степень механизации и автоматизации, сочетание в производственном потоке по технологическому назначению. 

Основные законы технологических процессов. Законы, определяющие количественные соотношения. Энергетические и материальные балансы аппаратов. Энергетический КПД и пути его повышения. Понятие об эксергетическом балансе аппаратов, потери на необратимость процессов. Законы, устанавливающие физико-химические равновесные соотношения: принцип Ле-Шателье, правило Гиббса. Движущая сила процесса. Равновесное соотношение систем. Стационарные и нестационарные процессы. 

1.3. Принципы оптимизации процессов. 

Оптимальный режим процесса. Параметры оптимизации, периодические и непрерывные процессы, различные способы перемещения сред в аппаратах, принцип обновления поверхности контакта фаз. Использование теплоты сбросных потоков. Тепловые насосы, тепловые трубы, парокомпрессоры. Законы, определяющие скорость гидромеханических, тепловых и массообменных процессов. Математическое описание законов. Единство кинетических уравнений гидромеханических, тепловых и массообменных процессов. Практическое значение кинетических соотношений для проектирования аппаратов. Статический и кинетический методы расчета процессов. 

2. Основы гидравлики. Гидравлические машины 

2.1. Основные определения. 

Идеальные и реальные жидкости. Физические свойства жидкостей: плотность, удельный вес, сжимаемость, температурное расширение, вязкость, поверхностное натяжение. Силы, действующие на жидкость. Характеристика неньютоновских жидкостей: бингановских, псевдопластических, дилатантных, тиксотропных и реопектантных. 

2.2. Гидростатика. 

Давление в газах, жидких и пластично-вязких телах, его измерение. Основное уравнение гидростатики, эпюры гидростатического давления. Графический метод определения суммарной силы, действующей на стенки аппаратов. Практическое применение основного уравнения гидростатики в расчетах пищевой аппаратуры. Обобщенное дифференциальное уравнение Эйлера. Уравнение свободной поверхности жидкости при вращении и прямолинейном равноускоренном движении емкостей. Законы Паскаля и Архимеда, их использование в гидравлических расчетах. Устройство и область применения гидравлических машин: гидравлического пресса, гидравлического аккумулятора и мультипликатора. 

2.3. Основы гидродинамики. 

Элементарная струйка и поток жидкости. Живое сечение, расход и средняя скорость жидкости. Уравнение неразрывности. Уравнение Бернулли для установившегося движения идеальной жидкости. Геометрический и электрический смысл уравнения Бернулли. 

Уравнение Бернулли для потока реальной жидкости. Практические приложения уравнения Бернулли. 

2.4. Истечение жидкости через отверстия и насадки. 

Истечение жидкости при постоянной и переменном уровне в аппарате. Истечение жидкости через насадки. Основные характеристики струйки жидкости. Практическое применение в пищевой промышленности закономерностей истечения жидкости через отверстия и насадки. 

2.5. Перемещение жидкостей. 

Основные параметры насосов: производительность, напор, мощность, КПД и частота вращения электродвигателя. Принцип действия центробежных насосов. Расчет максимальной высоты всасывания насоса. Явление кавитации. Основные уравнения центробежного насоса. Законы пропорциональности. Коэффициент быстроходности лопастных машин. Пересчет характеристик центробежных насосов при изменении вязкости. 

Экспериментальные характеристики центробежных насосов. Работа насосов на сеть. 

Общие понятия о работе и устройстве паровых турбин. Поршневые насосы. Принцип действия и типы поршневых насосов: простого, двойного и тройного действия; плунжерные насосы. Специальные типы объемных и центробежных насосов. Диафрагмовые (мембранные) насосы. Шестеренчатые и пластинчатые насосы, роторные насосы с эллиптическим поршнем, перистальтические и струйные насосы. Винтовые насосы. 

2.6. Перемещение газов. 

Центробежные вентиляторы низкого, среднего и высокого давления. Устройство центробежных вентиляторов. 

Осевые вентиляторы. Устройство одно - и двухступенчатых вентиляторов. 

Компрессорные машины. Изотермический, адиабатный и политропический процессы сжатия газов. 

Устройство турбогазодувок и турбокомпрессоров. Способы охлаждения газа в турбокомпрессорах. 

Устройство осевых, поршневых многоступенчатых и роторных компрессоров. 

Вакуум-насосы. Степень сжатия вакуум-насосов: 

Поршневые, ротационные и струйные вакуум-насосы. Насосы для создания глубокого вакуума. Их устройство и принцип действия. 

3. Основные методы исследования процессов, аппаратов и машин 

Экспериментальный, аналитический и синтетический методы исследования. 

Экспериментальный метод. Основные этапы экспериментального исследования и их характеристика. Лабораторные, полупроизводственные и производственные установки. Понятие о моделировании процессов и аппаратов. Необходимость обобщения результатов локальных экспериментов. Современные математические методы планирования многофакторных экспериментов. Полный факторный эксперимент. Достоинства и недостатки экспериментального метода исследования. 

Информация о работе История развития органической химии