Автор: Пользователь скрыл имя, 28 Октября 2012 в 09:28, контрольная работа
Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее – в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.
По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410°C, а кипит лишь при 6690°C. Такая температура – на поверхности Солнца!
Введение……………………………………………………………………..3
История открытия элемента………………………….……………………..4
Нахождение в природе ………………………………………………..........5
Получение……………………………………………………………………7
Физические свойства………………………………………………..............9
Химические свойства…………………………………………….………..10
Применение………………………………………………………...............14
Диаграммы состояния……………………………………………………..15
Список литературы………………………………………………………...17
Министерство образования и науки Российской Федерации
Уфимский Государственный
Авиационный Технический
Кафедра Общей химии
Контролируемая
Химия металлов
Вольфрам
Выполнила:
студентка ИНЭК
гр.ЭУП-136
Габидуллина Т.Р.,
Уфа-2008
Содержание
Введение…………………………………………………………
История открытия элемента………………………….……………………..4
Нахождение в природе ………………………………………………..........5
Получение………………………………………………………
Физические свойства……………………………
Химические свойства……………………………
Применение……………………………………………………
Диаграммы состояния…………………………………………………….
Список литературы……………………………………………………
Введение
Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее – в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.
По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410°C, а кипит лишь при 6690°C. Такая температура – на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам – блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок – серый, темно-серый и даже черный (чем мельче зернение, тем темнее).
Металлический вольфрам имеет светло-серый цвет. После углерода у него самая высокая температура плавления среди всех простых веществ. Ее значение определено в пределах 3387–3422° С. У вольфрама – превосходные механические качества при высоких температурах и наименьший коэффициент расширения среди всех металлов. Вольфрам – один из наиболее тяжелых металлов с плотностью 19250 кг/м3.Решетка кубическая объемно центрированная, а = 0,31589 нм. Электропроводность вольфрама при 0° C – величина порядка 28% от электропроводности серебра, являющегося наиболее электропроводящим металлом. Чистый вольфрам довольно легко поддается обработке, однако обычно он содержит примеси углерода и кислорода, что и придает металлу известную всем твердость.
Вольфрам обладает очень высоким модулем растяжения и сжатия, очень высоким сопротивлением температурной ползучести, высокой тепло- и электропроводностью, высоким коэффициентом электронной эмиссии, который может быть еще улучшен сплавлением вольфрама с некоторыми оксидами металлов.
Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам – блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок – серый, темно-серый и даже черный (чем мельче зернение, тем темнее).
Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 (самый распространенный, его доля 30,64%) и 186. Из довольно многочисленных искусственных радиоактивных изотопов элемента №74 практически важны только три: вольфрам-181 с периодом полураспада 145 дней, вольфрам-185 (74,5 дня) и вольфрам-187 (23,85 часа). Все три эти изотопа образуются в ядерных реакторах при обстреле нейтронами природной смеси изотопов. Зарекомендовал себя в качестве высокоэффективной защиты от коррозии.
История открытия вольфрама
В 1783 г. испанские химики братья Элюар сообщили об открытии нового элемента. Разлагая саксонский минерал «вольфрам» азотной кислотой, они получили «кислую землю» – желтый осадок окиси какого-то металла, растворимый в аммиаке. В исходный минерал эта окись входила вместе с окислами железа и марганца. Братья Элюар предложили назвать новый элемент вольфрамом, а сам минерал – вольфрамитом.
Итак, кто открыл вольфрам? Братья Элюар? И да, и нет. Да – потому, что они первые сообщили об этом открытии в печати. Нет – потому, что за два года до этого – в 1781 г. – знаменитый шведский ученый Карл Вильгельм Шееле обнаружил такую же точно «желтую землю», обрабатывая азотной кислотой другой минерал. Его называли просто «tungsten», т.е. «тяжелый камень» (по-шведски tung – тяжелый, sten – камень). Шееле далее нашел, что эта «земля» отличается от аналогичной молибденовой по цвету и некоторым другим свойствам, а в минерале она связана с окисью кальция. В честь Шееле минерал тунгстен переименовали в «шеелит».
Остается добавить, что один из братьев Элюар был учеником Шееле и в 1781 г. работал в его лаборатории...
Обе стороны проявили в этом вопросе должное благородство: Шееле никогда не претендовал на открытие вольфрама, а братья Элюар не настаивали на своем приоритете.
Слово «вольфрам» немецкого происхождения. Известно, что раньше оно относилось не к металлу, а к главному минералу вольфрама – вольфрамиту. Есть предположение, что это слово было чуть ли не бранным. В XVI...XVII вв. «вольфрам» считали минералом олова. (Он действительно часто сопутствует оловянным рудам.) Но из руд, содержащих вольфрамит, олова выплавлялось меньше, кто-то словно «пожирал» его.
Так и появилось название, отразившее «волчьи повадки» вольфрама, – по-немецки Wolf – волк, а древнегерманское Ramm – баран.
В известном химическом реферативном журнале США или в справочных изданиях по всем химическим элементам Меллора (Англия) и Паскаля (Франция) тщетно было бы искать металл под названием «вольфрам». Элемент №74 называется в них иначе – тунгстен. Даже символ W (начальная буква слова Wolfram) получил всеобщее распространение лишь в последние годы: еще недавно в Италии и Франции писали Tu (начальные буквы от слова tungstene).
Нередко приходится слышать о вольфрамовых бронзах. Что это за металлы? Внешне они очень красивы. Золотистая вольфрамовая бронза имеет состав Na2O · WO2 · WO3, а синяя – Na2O · WO2 · 4WO3; пурпурно-красная и фиолетовая занимают промежуточное положение – соотношение WO3 к WO2 в них меньше четырех, но больше единицы. Как видно из формул, эти вещества не содержат ни меди, ни цинка, ни олова, т.е., строго говоря, они вовсе не бронзы. Они вообще не сплавы, так как здесь нет чисто металлических соединений: и вольфрам, и натрий окислены. Бронзу они, однако, напоминают не только цветом и блеском, но и твердостью, устойчивостью к химическим реагентам и большой электропроводностью.
Нахождение в природе
Вольфрам мало распространен в природе, содержание в земной коре 1,3·10-4% по массе. Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeWO4 · nMnWO4). Этот раствор – тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше гюбнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит – коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит – вольфрамат кальция CaWO4. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью – способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Как правило месторождения вольфрамовых руд связаны с областями распространения гранитов. Крупные кристаллы вольфрамита или шеелита – большая редкость. Обычно минералы лишь вкраплены в древние гранитные породы. Средняя концентрация вольфрама в них всего 1–2%, поэтому извлекать его довольно трудно. Всего известно около 15 собственных минералов вольфрама. Среди них расоит и штольцит, представляющие собой две различные кристаллические модификации вольфрамата свинца PbWO4. Другие минералы являются продуктами разложения или вторичными формами обычных минералов – вольфрамита и шеелита, например, вольфрамовая охра и гидротунгстит, являющийся гидратированным оксидом вольфрама, образовавшимся из вольфрамита; русселит – минерал, содержащий оксиды висмута и вольфрама. Единственный неоксидный минерал вольфрама – тунгстенит WS2, основные запасы которого сосредоточены в США. Обычно содержание вольфрама в разрабатываемых месторождениях лежит в пределах от 0,3 до 1,0% WO3.
Все вольфрамовые месторождения
имеют магматическое или
Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Ежегодная мировая добыча вольфрамовых руд составляет 5,95·104 тонн в пересчете на металл, из которых 4,95·104 тонн (83%) извлекается в Китае. В России добывается 3400 тонн, в Канаде – 3000 тонн.
На Кинг-Айленде в Австралии добывается 2000–2400 тонн вольфрамовой руды в год. В Австрии шеелит добывается в Альпах (провинции Зальцбург и Штайермарк). В северо-восточной Бразилии разрабатывается совместное месторождение вольфрама, золота и висмута (шахты Канунг и месторождение Кальзас в Юконе) с предполагаемым запасом золота 1 млн. унций и 30 000 т оксида вольфрама. Мировым лидером в разработке вольфрамового сырья является Китай (месторождения Жианьши (60% китайской добычи вольфрама), Хуньань (20%), Юннань (8%), Гуаньдонь (6%), Гуаньжи и Внутренняя Монголия (2% каждое) и другие). Объемы ежегодной добычи в Португалии (месторождение Панасхира) оцениваются в 720 т вольфрама в год. В России основные месторождения вольфрамовых руд расположены в двух регионах: на Дальнем Востоке (Лермонтовское месторождение, 1700 т концентрата в год) и на Северном Кавказе (Кабардино-Балкария, Тырныауз). Завод в Нальчике перерабатывает руду в оксид вольфрама и паравольфрамат аммония.
Крупнейшим потребителем вольфрама является Западная Европа – ее доля на мировом рынке составляет 30%. По 25% от общего потребления приходится на Северную Америку и Китай, а 12–13% на долю Японии. Спрос на вольфрам в странах СНГ оценивается в 3000 тонн металла в год.
Первая стадия получения вольфрама – обогащение руды, отделение ценных компонентов от основной массы – пустой породы. Методы обогащения – обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями – магнитной сепарацией (для вольфрамитных руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение – вольфрамит натрия. Другой способ получения этого вещества – выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т.е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaWO4 -> H2WO4 или (NH4)2WO4 -> WO3
можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения
окиси вольфрама – через
Превращение окислов или хлоридов в металл – следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама – водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с WO3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450...600°C) и в «горячих» (750...1100°C) зонах; в «холодных» – до низшего окисла WO2, дальше – до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется белее высокая температура – до 1300...1400°C. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.